






**OPERATING INSTRUCTIONS** 

# SINAMICS

# **SINAMICS G115D**

Distributed drive for conveyor technology control

www.siemens.com/drives

# SIEMENS

# SINAMICS

# SINAMICS G115D SINAMICS G115D distributed drive

**Operating Instructions** 

### Preface

| Fundamental safety<br>instructions                        | 1  |
|-----------------------------------------------------------|----|
| Overview of the SINAMICS<br>G115D drive                   | 2  |
| Mounting                                                  | 3  |
| Wiring                                                    | 4  |
| Commissioning                                             | 5  |
| Advanced commissioning                                    | 6  |
| Data backup and series<br>commissioning                   | 7  |
| Alarms, faults and system<br>messages                     | 8  |
| Corrective maintenance                                    | 9  |
| Technical data                                            | 10 |
| Additional information on<br>the SIMOGEAR geared<br>motor | 11 |
|                                                           |    |
| Appendix                                                  | Α  |

Edition 12/2021, Firmware V4.7 SP13

#### Legal information

#### Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

#### \land DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

#### \land warning

indicates that death or severe personal injury may result if proper precautions are not taken.

#### 

indicates that minor personal injury can result if proper precautions are not taken.

#### NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

#### **Qualified Personnel**

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

#### **Proper use of Siemens products**

Note the following:

#### M WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

#### Trademarks

All names identified by <sup>®</sup> are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

#### **Disclaimer of Liability**

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

# Preface

#### About the Manual

#### Who requires the operating instructions and what for?

These operating instructions primarily address fitters, commissioning engineers and machine operators. The operating instructions describe the devices and device components and enable the target groups being addressed to install, connect-up, set, and commission the converters safely and in the correct manner.

#### What is described in the operating instructions?

These operating instructions provide a summary of all the information required to operate the drive under normal, safe conditions.

The information provided in the operating instructions has been compiled in such a way that it is sufficient for all standard applications and enables drives to be commissioned as efficiently as possible. Where it appears useful, additional information for entry level personnel has been added.

The operating instructions also contain information about special applications. Since it is assumed that readers already have a sound technical knowledge of how to configure and parameterize these applications, the relevant information is summarized accordingly. This relates, e.g. to operation with fieldbus systems and safety-related applications.

#### What is the meaning of the symbols in the manual?



Reference to further information in the manual

 $\mathbb{M}$ 

Download from the Internet

Example of converter function symbols

End of a handling instruction

#### About the device

#### Use for the intended purpose

The device has been approved for industrial and commercial use on industrial networks. Additional measures have to be taken when connected to public grids.

The technical specifications and information about connection conditions are indicated on the rating plate and in the operating instructions.

#### Use of third-party products

This document contains recommendations relating to third-party products. Siemens accepts the fundamental suitability of these third-party products.

You can use equivalent products from other manufacturers.

Siemens does not accept any warranty for the properties of third-party products.

#### Use of OpenSSL

This product contains software developed in the OpenSSL project for use within the OpenSSL toolkit.

This product contains cryptographic software created by Eric Young.

This product contains software developed by Eric Young.

Further information is provided on the Internet:

( OpenSSL (<u>https://www.openssl.org/</u>)

Cryptsoft (<u>mailto:eay@cryptsoft.com</u>)

# Table of contents

|   | Preface                                                   |                                                                                                                                                                      | 3            |
|---|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1 | Fundame                                                   | ental safety instructions                                                                                                                                            | 15           |
|   | 1.1                                                       | General safety instructions                                                                                                                                          | 15           |
|   | 1.2                                                       | Equipment damage due to electric fields or electrostatic discharge                                                                                                   |              |
|   | 1.3                                                       | Warranty and liability for application examples                                                                                                                      |              |
|   | 1.4                                                       | Security information                                                                                                                                                 |              |
|   | 1.5                                                       | Residual risks of power drive systems                                                                                                                                |              |
| 2 | Overview                                                  | v of the SINAMICS G115D drive                                                                                                                                        |              |
|   | 2.1                                                       | System overview                                                                                                                                                      |              |
|   | 2.2<br>2.2.1<br>2.2.2                                     | Scope of delivery<br>SINAMICS G115D Motor Mounted<br>SINAMICS G115D Wall Mounted                                                                                     |              |
|   | 2.3                                                       | Directives and standards                                                                                                                                             |              |
|   | 2.4<br>2.4.1<br>2.4.2<br>2.4.3<br>2.4.4<br>2.4.5<br>2.4.6 | Optional components<br>External braking resistor<br>Connectors<br>Glanded installation kit<br>Connector cover kit<br>SINAMICS G120 Smart Access<br>SAM interface kit |              |
| 3 | Mounting                                                  | g                                                                                                                                                                    | 39           |
|   | 3.1                                                       | Mounting the G115D Motor Mounted drive                                                                                                                               |              |
|   | 3.2                                                       | Mounting the G115D Wall Mounted drive                                                                                                                                | 41           |
|   | 3.3<br>3.3.1<br>3.3.2                                     | Mounting the optional components<br>Mounting the external braking resistor<br>Mounting the SINAMICS G120 Smart Access                                                | 44           |
| 4 | Wiring                                                    |                                                                                                                                                                      | 51           |
|   | 4.1<br>4.1.1<br>4.1.2<br>4.1.3                            | EMC installation guidelines<br>Connections and interference suppression<br>Basic EMC rules<br>Equipotential bonding                                                  | 51<br>51     |
|   | 4.2<br>4.2.1<br>4.2.2<br>4.2.3                            | Permissible line supplies<br>TN line system<br>TT line system<br>IT line system                                                                                      | 55<br>55<br> |
|   | 4.3                                                       | Requirements for the protective conductor                                                                                                                            | 59           |

| 4.4                                                                                  | Requirements for branch circuit protection                                                                                                                                                                                                                                                                                                                        | 60                               |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 4.5                                                                                  | Operation with residual current protective device (RCD)                                                                                                                                                                                                                                                                                                           | 60                               |
| 4.6                                                                                  | Forming DC link capacitors                                                                                                                                                                                                                                                                                                                                        | 61                               |
| 4.7                                                                                  | Overview of the converter interfaces                                                                                                                                                                                                                                                                                                                              | 62                               |
| 4.8<br>4.8.1<br>4.8.2                                                                | Cables and connectors<br>Maximum permissible cable length<br>Cable cross-sections and cable lugs                                                                                                                                                                                                                                                                  | 70                               |
| 4.9<br>4.9.1<br>4.9.2                                                                | Connecting the line supply<br>Interface description - X1/X3<br>Connecting to the line supply using daisy chain                                                                                                                                                                                                                                                    | 74                               |
| 4.10<br>4.10.1<br>4.10.2<br>4.10.2.1<br>4.10.2.2                                     | Connecting the motor<br>Interface description - X2<br>Connecting the motor in a star or delta connection<br>Overview<br>Configuring the star/delta connection of the wall-mounted converter                                                                                                                                                                       | 79<br>80<br>80                   |
| 4.11<br>4.11.1<br>4.11.2                                                             | Connecting the 24 V power supply<br>Interface description - X01/X02<br>Connecting to the 24 V power supply using daisy chain                                                                                                                                                                                                                                      | 82                               |
| 4.12<br>4.12.1<br>4.12.2<br>4.12.3                                                   | Connecting the digital inputs and outputs<br>Interface description - X07/X08/X05<br>Factory interface setting<br>Fail-safe digital input                                                                                                                                                                                                                          | 86<br>87                         |
| 4.13<br>4.13.1<br>4.13.2<br>4.13.3<br>4.13.4<br>4.13.5<br>4.13.6<br>4.13.7<br>4.13.8 | Connecting to PROFINET and Ethernet<br>Interface description - X150 P1/P2<br>Communication via PROFINET IO and Ethernet<br>Protocols used<br>Connecting the converter to PROFINET<br>What do you have to set for communication via PROFINET<br>Installing GSDML<br>Connecting the converter to Ethernet/IP<br>What do you need for communication via Ethernet/IP? | 94<br>95<br>97<br>97<br>98<br>99 |
| 4.14<br>4.14.1<br>4.14.2<br>4.14.3<br>4.14.4                                         | Connecting to AS-i<br>General information<br>Interface description - X03<br>Setting the address<br>Using the AS-i Programmer                                                                                                                                                                                                                                      | 100<br>101<br>101                |
| 4.15                                                                                 | Connecting to SINAMICS G115D I/O variant                                                                                                                                                                                                                                                                                                                          | 105                              |
| 4.16                                                                                 | Grounding the converter housing                                                                                                                                                                                                                                                                                                                                   | 105                              |
| 4.17                                                                                 | Connecting the external braking resistor                                                                                                                                                                                                                                                                                                                          | 106                              |
| 4.18                                                                                 | Connection examples                                                                                                                                                                                                                                                                                                                                               | 108                              |
| Commissic                                                                            | oning                                                                                                                                                                                                                                                                                                                                                             | 111                              |
| 5.1                                                                                  | Commissioning guidelines                                                                                                                                                                                                                                                                                                                                          | 111                              |
| 5.2                                                                                  | Commissioning tools                                                                                                                                                                                                                                                                                                                                               | 112                              |

5

| 5.3<br>5.3.1   | Preparing for commissioning<br>Factory settings                              |     |
|----------------|------------------------------------------------------------------------------|-----|
| 5.3.2          | Collecting motor data                                                        |     |
| 5.3.3          | Selecting U/f control or speed control                                       |     |
| 5.3.4          | Calculating maximum speed for permanent magnet synchronous motors            |     |
| 5.4            | Quick commissioning                                                          | 119 |
| 5.4.1          | Quick commissioning with DIP switches                                        | 119 |
| 5.4.2          | Quick commissioning with a PC (Startdrive)                                   | 122 |
| 5.4.2.1        | Creating a project                                                           |     |
| 5.4.2.2        | Integrating the converter into the project                                   | 123 |
| 5.4.2.3        | Starting the Commissioning Wizard                                            |     |
| 5.4.2.4        | Carrying out quick commissioning                                             |     |
| 5.4.2.5        | Identifying motor data                                                       |     |
| 5.4.3          | Quick commissioning with the SINAMICS G120 Smart Access                      |     |
| 5.5            | Saving the settings in the converter (RAM $ ightarrow$ EEPROM)               | 130 |
| 5.6            | Restoring the factory settings                                               |     |
| 5.6.1          | Restoring the factory settings/delivery condition (without safety functions) |     |
| 5.6.2          | Resetting the safety functions to the factory settings                       | 133 |
| Advance        | ed commissioning                                                             | 135 |
| 6.1            | Overview of converter functions                                              | 135 |
| 6.2            | Sequence control when switching the motor on and off                         | 137 |
| 6.3            | Adapt the default settings of the inputs and outputs                         | 139 |
| 6.3.1          | Overview                                                                     |     |
| 6.3.2          | Digital Inputs                                                               | 140 |
| 6.3.3          | Digital outputs                                                              | 141 |
| 6.4            | Controlling clockwise and counter-clockwise rotation via digital inputs      |     |
| 6.4.1          | Two-wire control, method 1                                                   |     |
| 6.4.2          | Two-wire control, method 2                                                   |     |
| 6.4.3          | Two-wire control, method 3                                                   |     |
| 6.4.4          | Three-wire control, method 1                                                 |     |
| 6.4.5          | Three-wire control, method 2                                                 |     |
| 6.5            | Drive control via PROFINET                                                   |     |
| 6.5.1          | Receive data and send data                                                   |     |
| 6.5.2          | Telegrams                                                                    |     |
| 6.5.3          | Control and status word 1                                                    |     |
| 6.5.4          | Control and status word 3                                                    |     |
| 6.5.5          | Control and status word G115D                                                |     |
| 6.5.6<br>6.5.7 | NAMUR message word                                                           |     |
| 6.5.8          | Parameter channel<br>Expanding or freely interconnecting telegrams           |     |
| 6.5.8          | Acyclically reading and writing converter parameters                         |     |
|                |                                                                              |     |
| 6.6<br>6.6 1   | Drive control via Ethernet/IP                                                |     |
| 6.6.1<br>6.6.2 | Configuring communication via Ethernet/IP                                    |     |
| 6.6.2<br>6.6.3 | Supported objects<br>Supported ODVA AC/DC assemblies                         |     |
| 6.6.4          | Creating generic I/O module                                                  |     |
| 6.6.5          | The converter as Ethernet node                                               |     |
| 0.0.5          |                                                                              |     |

6

| 6.7<br>6.7.1<br>6.7.2<br>6.7.3<br>6.7.4<br>6.7.4.1<br>6.7.4.2<br>6.7.4.3                                                                                                                        | Drive control via AS-i<br>Single Slave mode<br>Dual Slave mode<br>Assignment tables<br>Cyclic and acyclic communication via CTT2<br>Cyclic communication<br>Acyclic communication - standard<br>Acyclic communication - manufacturer-specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 179<br>181<br>184<br>186<br>187<br>188<br>188                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 6.8                                                                                                                                                                                             | Jogging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190                                                                                                   |
| 6.9<br>6.9.1<br>6.9.1.1<br>6.9.1.2<br>6.9.1.3<br>6.9.1.4<br>6.9.2<br>6.9.2.1<br>6.9.2.2<br>6.9.2.3<br>6.9.2.4<br>6.9.3<br>6.9.3.1<br>6.9.3.1<br>6.9.3.2<br>6.9.4<br>6.9.4.1<br>6.9.4.2<br>6.9.5 | Conveyor technology control functions (for G115D PROFINET and AS-i variants only)<br>Conveyors<br>Conveyor, one direction and one speed (p3393 = 1)<br>Conveyor, one directions and one speeds (p3393 = 2)<br>Conveyor, two directions and one speed (p3393 = 3)<br>Conveyor, two directions and two speeds (p3393 = 4)<br>Turntables<br>Turntable, two positions and one speed (p3393 = 5)<br>Turntable, two positions and two speeds (p3393 = 6)<br>Turntable, two positions and one speed (p3393 = 7)<br>Turntable, three positions and one speed (p3393 = 7)<br>Turntable, three positions and two speeds (p3393 = 8)<br>Corner turntable lifts<br>Corner turntable lift. two positions and one speed (p3393 = 9)<br>Corner turntable lift, two positions and two speeds (p3393 = 10)<br>Travelling trolleys<br>Travelling trolley, one speed (p3393 = 12)<br>Conveyor technology control parameters | 192<br>194<br>195<br>197<br>199<br>200<br>203<br>207<br>210<br>213<br>214<br>217<br>219<br>220<br>222 |
| 6.10                                                                                                                                                                                            | Switching over the drive control (command data set)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 6.11                                                                                                                                                                                            | Motor holding brake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 6.12                                                                                                                                                                                            | Free function block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 6.13<br>6.13.1<br>6.13.2<br>6.13.3<br>6.13.4                                                                                                                                                    | Selecting physical units<br>Motor standard<br>System of units<br>Technological unit of the technology controller<br>Setting the system of units and technology unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 235<br>235<br>236                                                                                     |
| $\begin{array}{c} 6.14\\ 6.14.1\\ 6.14.2\\ 6.14.2.1\\ 6.14.2.2\\ 6.14.2.3\\ 6.14.2.3\\ 6.14.2.5\\ 6.14.2.5\\ 6.14.2.6\\ 6.14.2.7\\ 6.14.2.8\\ 6.14.2.9\\ \end{array}$                           | Safety function password<br>Configuring a safety function<br>Interconnecting the "STO active" signal<br>Setting the filter for fail-safe digital inputs<br>Setting the forced checking procedure (test stop)<br>Finalizing online commissioning<br>Checking the interconnection of digital inputs<br>Acceptance - completion of commissioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 238<br>241<br>241<br>242<br>243<br>244<br>246<br>248<br>249<br>250                                    |
| 6.15                                                                                                                                                                                            | Setpoints                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 251                                                                                                   |

| 6.15.1<br>6.15.2<br>6.15.3<br>6.15.4<br>6.15.5                   | Overview<br>Specifying the setpoint via the fieldbus<br>Electromechanical potentiometer<br>Motorized potentiometer as setpoint source<br>Fixed speed setpoint as setpoint source | 253<br>254<br>255               |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 6.16<br>6.16.1<br>6.16.2<br>6.16.3<br>6.16.4<br>6.16.5<br>6.16.6 | Setpoint processing<br>Overview<br>Invert setpoint<br>Inhibit direction of rotation<br>Skip frequency bands and minimum speed<br>Speed limitation<br>Ramp-function generator     | 261<br>262<br>263<br>264<br>265 |
| 6.17                                                             | PID technology controller                                                                                                                                                        | 271                             |
| 6.18<br>6.18.1                                                   | Motor control<br>Setting the saturation characteristic of the permanent magnet synchronous motor (third-<br>party motor)                                                         |                                 |
| 6.18.2                                                           | U/f control                                                                                                                                                                      |                                 |
| 6.18.2.1                                                         | Characteristics of U/f control                                                                                                                                                   | 281                             |
| 6.18.2.2                                                         | Selecting the U/f characteristic                                                                                                                                                 |                                 |
| 6.18.2.3<br>6.18.3                                               | Optimizing motor starting<br>Sensorless vector control with speed controller                                                                                                     |                                 |
| 6.18.3.1                                                         | Structure of vector control without encoder (sensorless)                                                                                                                         |                                 |
| 6.18.3.2                                                         | Optimizing the closed-loop speed controller                                                                                                                                      |                                 |
| 6.18.3.3                                                         | Advanced settings                                                                                                                                                                |                                 |
| 6.18.3.4                                                         | Optimizing the operation of the permanent magnet synchronous motor                                                                                                               |                                 |
| 6.18.3.5                                                         | Friction characteristic                                                                                                                                                          |                                 |
| 6.18.3.6                                                         | Moment of inertia estimator                                                                                                                                                      |                                 |
| 6.18.3.7                                                         | Pole position identification                                                                                                                                                     |                                 |
| 6.18.4                                                           | Torque control                                                                                                                                                                   |                                 |
| 6.19                                                             | Electrically braking the motor                                                                                                                                                   |                                 |
| 6.19.1                                                           | DC braking                                                                                                                                                                       |                                 |
| 6.19.2                                                           | Dynamic braking                                                                                                                                                                  | 309                             |
| 6.20                                                             | Overcurrent protection                                                                                                                                                           | 311                             |
| 6.21                                                             | Converter protection using temperature monitoring                                                                                                                                | 312                             |
| 6.22                                                             | Motor temperature monitoring using a temperature sensor                                                                                                                          | 316                             |
| 6.23                                                             | Motor protection by calculating the temperature                                                                                                                                  | 319                             |
| 6.24                                                             | Motor and converter protection by limiting the voltage                                                                                                                           | 321                             |
| 6.25                                                             | Monitoring the driven load                                                                                                                                                       | 323                             |
| 6.25.1                                                           | No-load monitoring                                                                                                                                                               |                                 |
| 6.25.2                                                           | Rotation monitoring                                                                                                                                                              | 324                             |
| 6.25.3                                                           | Torque monitoring                                                                                                                                                                |                                 |
| 6.25.4                                                           | Blocking protection, leakage protection and dry-running protection                                                                                                               | 327                             |
| 6.26                                                             | Efficiency optimization                                                                                                                                                          | 330                             |
| 6.27                                                             | Calculating the energy saving for fluid flow machines                                                                                                                            | 333                             |
| 6.28                                                             | Switchover between different settings                                                                                                                                            | 336                             |

| 7 | Data backup and series commissioning        |                                                                                                                                                                                                                                                                       |                   |  |  |
|---|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|
|   | 7.1<br>7.1.1<br>7.1.2<br>7.1.3              | Transferring settings using a memory card<br>Memory cards<br>Converter $\rightarrow$ Memory card<br>Memory card $\rightarrow$ converter                                                                                                                               | 340<br>341        |  |  |
|   | 7.1.4                                       | Activating message for a memory card that is not inserted                                                                                                                                                                                                             |                   |  |  |
|   | 7.2<br>7.2.1<br>7.2.2                       | Transferring settings using a PG/PC<br>Converter $\rightarrow$ PG/PC<br>PG/PC $\rightarrow$ converter                                                                                                                                                                 | 346               |  |  |
|   | 7.3                                         | Other ways to back up settings                                                                                                                                                                                                                                        | 349               |  |  |
|   | 7.4                                         | Write protection                                                                                                                                                                                                                                                      | 349               |  |  |
|   | 7.5<br>7.5.1<br>7.5.2                       | Know-how protection<br>Extending the exception list for know-how protection<br>Activating and deactivating know-how protection                                                                                                                                        | 352               |  |  |
| 8 | Alarms, fau                                 | Ilts and system messages                                                                                                                                                                                                                                              | 357               |  |  |
|   | 8.1                                         | Status LED overview                                                                                                                                                                                                                                                   | 357               |  |  |
|   | 8.2                                         | System runtime                                                                                                                                                                                                                                                        | 361               |  |  |
|   | 8.3                                         | Identification & maintenance data (I&M)                                                                                                                                                                                                                               | 361               |  |  |
|   | 8.4                                         | Alarms, alarm buffer, and alarm history                                                                                                                                                                                                                               | 362               |  |  |
|   | 8.5                                         | Faults, fault buffer and fault history                                                                                                                                                                                                                                | 366               |  |  |
|   | 8.6                                         | List of alarms and faults                                                                                                                                                                                                                                             | 369               |  |  |
| 9 | Corrective                                  | maintenance                                                                                                                                                                                                                                                           | 375               |  |  |
|   | 9.1                                         | Spare parts compatibility                                                                                                                                                                                                                                             | 375               |  |  |
|   | 9.2<br>9.2.1<br>9.2.2<br>9.2.2.1<br>9.2.2.2 | Replacing the converter<br>Replacing the converter hardware<br>Replacing a converter with active know-how protection<br>Replacing a converter with know-how protection without copy protection<br>Replacing a converter with know-how protection with copy protection | 376<br>378<br>378 |  |  |
|   | 9.3<br>9.3.1<br>9.3.2<br>9.3.3              | Replacing the spare parts<br>Spare parts overview<br>Replacing the Electronic Module<br>Replacing the fan unit                                                                                                                                                        | 381<br>382        |  |  |
|   | 9.4                                         | Repair switch                                                                                                                                                                                                                                                         | 386               |  |  |
|   | 9.5                                         | Local/Remote control panel                                                                                                                                                                                                                                            | 387               |  |  |
|   | 9.6<br>9.6.1<br>9.6.2<br>9.6.3<br>9.6.4     | Firmware upgrade and downgrade<br>Preparing the memory card<br>Upgrading the firmware<br>Downgrading the firmware<br>Correcting an unsuccessful firmware upgrade or downgrade                                                                                         | 391<br>391<br>394 |  |  |
|   | 9.7                                         | Reduced acceptance test after component replacement and firmware change                                                                                                                                                                                               | 397               |  |  |

| 10 | Technical d | lata                                                                                | . 399 |
|----|-------------|-------------------------------------------------------------------------------------|-------|
|    | 10.1        | Technical data of the G115D converter with SIMOGEAR geared motor                    | . 399 |
|    | 10.1.1      | General technical data                                                              |       |
|    | 10.1.2      | Technical data of inputs and outputs                                                | . 401 |
|    | 10.1.3      | Technical data dependent upon the power                                             | . 403 |
|    | 10.1.4      | Technical data of braking resistors                                                 |       |
|    | 10.1.5      | Load cycles and overload capabilities                                               | . 405 |
|    | 10.1.6      | Derating data                                                                       |       |
|    | 10.1.6.1    | Torque derating as a function of the installation altitude                          | . 407 |
|    | 10.1.6.2    | Torque derating as a function of the surrounding temperature                        |       |
|    | 10.1.6.3    | Toque derating as a function of the line voltage                                    |       |
|    | 10.1.6.4    | Torque derating as a function of the pulse frequency                                |       |
|    | 10.1.6.5    | Torque derating as a function of the motor speed                                    | . 411 |
|    | 10.2        | Technical data of the G115D wall-mounted converter                                  | . 412 |
|    | 10.2.1      | General converter technical data                                                    |       |
|    | 10.2.2      | Technical data of inputs and outputs                                                |       |
|    | 10.2.3      | Technical data dependent upon the power                                             |       |
|    | 10.2.4      | Technical data of braking resistors                                                 |       |
|    | 10.2.5      | Load cycles and overload capabilities                                               |       |
|    | 10.2.6      | Derating data                                                                       |       |
|    | 10.2.6.1    | Current derating as a function of the installation altitude                         |       |
|    | 10.2.6.2    | Current derating as a function of the surrounding temperature                       |       |
|    | 10.2.6.3    | Current derating as a function of the line voltage                                  |       |
|    | 10.2.6.4    | Current derating as a function of the pulse frequency                               |       |
|    | 10.2.6.5    | Derating of motor cable length based on pulse frequency and surrounding temperature |       |
|    | 10.3        | Low frequency operation                                                             | . 423 |
|    | 10.4        | Data regarding the power loss in partial load operation                             | . 424 |
|    | 10.5        | Electromagnetic compatibility of the converter                                      | . 424 |
|    | 10.6        | Protecting persons from electromagnetic fields                                      | . 426 |
| 11 | Additional  | information on the SIMOGEAR geared motor                                            | . 429 |
|    | 11.1        | General information geared motor with SINAMICS G115D Motor Mounted / Wall Mounted   |       |
|    | 11.1.1      | Obligations of the user                                                             |       |
|    | 11.1.2      | Particular types of hazards                                                         | . 429 |
|    | 11.1.3      | Rating plate                                                                        |       |
|    | 11.1.4      | Surface treatment                                                                   |       |
|    | 11.1.4.1    | General information on surface treatment                                            | . 431 |
|    | 11.1.4.2    | Painted version                                                                     | . 431 |
|    | 11.1.4.3    | Primed version                                                                      | . 433 |
|    | 11.1.5      | Incoming goods                                                                      |       |
|    | 11.1.6      | General information on transport                                                    |       |
|    | 11.1.7      | Unpacking                                                                           |       |
|    | 11.1.8      | General information concerning the installation                                     |       |
|    | 11.1.9      | Installation notes                                                                  |       |
|    | 11.1.10     | Thread sizes and tightening torques for fastening bolts                             |       |
|    | 11.1.11     | Operation                                                                           |       |
|    | 11.1.12     | Cleaning the geared motor                                                           |       |
|    | 11.1.13     | Inspecting the geared motor                                                         |       |
|    | 11.1.14     | Disposal                                                                            | . 440 |

| 11.1.15<br>11.1.15.1<br>11.1.15.2<br>11.1.15.3<br>11.1.15.4<br>11.1.15.6<br>11.1.15.6<br>11.1.15.7<br>11.1.16<br>11.1.16.1<br>11.1.16.2 | Technical data<br>Type designation motor and converter<br>Gearbox type designation<br>General technical data<br>Rating plate for geared motors with SINAMICS G115D Motor Mounted<br>Rating plate for geared motors with SINAMICS G115D Wall Mounted<br>Weight<br>Sound energy level<br>Spare parts<br>Stocking of spare parts<br>Spares on Web | . 441<br>. 442<br>. 443<br>. 444<br>. 445<br>. 446<br>. 446<br>. 447<br>. 447 |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 11.2<br>11.2.1<br>11.2.2<br>11.2.3<br>11.2.4                                                                                            | Specific data motor<br>General motor information<br>Use as prescribed<br>General technical description<br>Cooling                                                                                                                                                                                                                              | . 449<br>. 450<br>. 451                                                       |
| 11.2.5<br>11.2.6<br>11.2.7<br>11.2.8<br>11.2.9                                                                                          | Terminal box and application box<br>Fastening for suspended transport<br>Storage<br>Installation conditions for the motor<br>Condensation drain hole (optional)                                                                                                                                                                                | . 452<br>. 452<br>. 453                                                       |
| 11.2.10<br>11.2.10.1<br>11.2.10.2<br>11.2.10.3                                                                                          | Connecting the motor in the terminal box<br>General notes for motor connection (Wall Mounted)<br>Terminal box<br>Terminal marking                                                                                                                                                                                                              | . 455<br>. 455<br>. 456                                                       |
| 11.2.10.4<br>11.2.10.5<br>11.2.10.6<br>11.2.10.7<br>11.2.11                                                                             | Direction of rotation<br>Connecting the cables in the terminal box<br>External grounding<br>Mounting and installation (Wall Mounted)                                                                                                                                                                                                           | . 458<br>. 459<br>. 459                                                       |
| 11.2.11<br>11.2.12<br>11.2.13<br>11.2.14<br>11.2.15                                                                                     | Converter operation<br>Checking the insulation resistance (Wall Mounted)<br>Commissioning the motor<br>Faults, causes and remedies<br>General notes about maintenance                                                                                                                                                                          | . 462<br>. 463<br>. 465                                                       |
| 11.2.16<br>11.2.17<br>11.2.18<br>11.2.19                                                                                                | Locking the manual release of the brake (optional)<br>Lubrication<br>Checking the tightness of fastening bolts<br>Inspection of the motor                                                                                                                                                                                                      | . 467<br>. 467<br>. 469<br>. 469                                              |
| 11.2.20<br>11.2.20.1<br>11.2.20.2<br>11.2.20.3                                                                                          | Servicing the brake<br>Wear of the spring-operated brake<br>Maintenance intervals for the brake<br>Adjusting the air gap                                                                                                                                                                                                                       | . 469<br>. 470<br>. 471                                                       |
| 11.2.20.4<br>11.2.21<br>11.2.22<br>11.2.22.1<br>11.2.22.2                                                                               | Replacing the friction lining<br>Circuit diagrams<br>Spare parts list, motor<br>Motor frame sizes 71 - 132<br>Brake                                                                                                                                                                                                                            | . 474<br>. 476<br>. 476                                                       |
| 11.3<br>11.3.1<br>11.3.2<br>11.3.3                                                                                                      | Specific data gearbox<br>General information gearbox<br>Use for the intended purpose<br>General technical description                                                                                                                                                                                                                          | . 481<br>. 481<br>. 483                                                       |

| 11.3.4     | Shaft seals                                                        | 484 |
|------------|--------------------------------------------------------------------|-----|
| 11.3.5     | Cooling                                                            |     |
| 11.3.6     | Fastening for suspended transport                                  | 486 |
| 11.3.7     | Storage                                                            |     |
| 11.3.7.1   | General information for storage                                    | 487 |
| 11.3.7.2   | General notes for storage up to 36 months                          | 488 |
| 11.3.7.3   | Gearbox filled with operating oil and anti-corrosive agent         | 488 |
| 11.3.7.4   | Gearbox completely filled with oil                                 |     |
| 11.3.8     | Gearbox with foot mounting                                         |     |
| 11.3.9     | Gearbox with flange mounting                                       |     |
| 11.3.10    | Gearboxes in foot or flange version                                |     |
| 11.3.11    | Mounting an input or output element on the gearbox shaft           |     |
| 11.3.12    | Removing and installing the protection cover                       |     |
| 11.3.13    | General information on installing the shaft-mounted gearbox        |     |
| 11.3.14    | Hollow shaft with feather key                                      |     |
| 11.3.14.1  | Mounting the hollow shaft with parallel key                        |     |
| 11.3.14.2  | Removing the hollow shaft with parallel key                        |     |
| 11.3.15    | Hollow shaft with shrink disk                                      |     |
| 11.3.15.1  | Mounting the hollow shaft with shrink disk                         |     |
| 11.3.15.2  | Mounting the shrink disk                                           |     |
| 11.3.15.3  | Pulling off the shrink disk                                        |     |
| 11.3.15.4  | Cleaning and lubricating shrink disks                              |     |
| 11.3.16    | SIMOLOC assembly system                                            |     |
| 11.3.16.1  | General notes for the SIMOLOC assembly system                      |     |
| 11.3.16.2  | Installing SIMOLOC                                                 |     |
| 11.3.16.3  | Removing SIMOLOC                                                   |     |
| 11.3.17    | Hollow shaft with splines                                          |     |
| 11.3.18    | Torque arms with slip-on gearboxes                                 |     |
| 11.3.18.1  | General information regarding torque arms                          |     |
| 11.3.18.2  | Mounting torque arms on parallel shaft gearboxes                   |     |
| 11.3.18.3  | Mounting torque arms on bevel gearboxes and helical worm gearboxes |     |
| 11.3.19    | General information for commissioning                              |     |
| 11.3.20    | Checking the oil level prior to commissioning                      |     |
| 11.3.21    | Mounting the oil expansion tank                                    |     |
| 11.3.22    | Faults, causes and remedies                                        |     |
| 11.3.23    | General notes about maintenance work                               |     |
| 11.3.24    | Checking and changing lubricants                                   | 517 |
| 11.3.24.1  | General safety instructions                                        |     |
| 11.3.24.2  | Checking the oil level                                             |     |
| 11.3.24.3  | Checking the oil level using the oil sight glass (optional)        | 520 |
| 11.3.24.4  | Checking the oil level using the oil dipstick (optional)           |     |
| 11.3.24.5  | Checking the oil quality                                           |     |
| 11.3.24.6  | General safety notes for changing the oil                          | 522 |
| 11.3.24.7  | Draining the oil                                                   |     |
| 11.3.24.8  | Flushing the gearbox when changing between incompatible oils       |     |
| 11.3.24.9  | Filling in oil                                                     |     |
| 11.3.24.10 | Topping up with oil                                                |     |
| 11.3.24.11 | Change the roller bearing grease                                   |     |
| 11.3.24.12 | Service life of the lubricants                                     |     |
| 11.3.24.13 | Recommended lubricants                                             |     |
| 11.3.25    | Replace bearings                                                   |     |
| 11.3.26    | Checking the gearbox for leaks                                     |     |
|            |                                                                    |     |

| 11.3.27   | Replacing the vent valve                     |     |
|-----------|----------------------------------------------|-----|
| 11.3.28   | Checking the oil level sensor (optional)     | 529 |
| 11.3.29   | Checking the tightness of fastening bolts    |     |
| 11.3.30   | Replacing the hose of the oil expansion unit | 530 |
| 11.3.31   | Mounting positions                           |     |
| 11.3.31.1 | General notes on mounting positions          | 531 |
| 11.3.31.2 | Single-stage helical gearboxes               | 532 |
| 11.3.31.3 | Two- and three-stage helical gearbox         | 534 |
| 11.3.31.4 | Parallel shaft gearbox                       | 541 |
| 11.3.31.5 | Bevel gearbox                                | 547 |
| 11.3.31.6 | Helical worm gearbox                         | 556 |
| 11.3.32   | Oil quantities                               | 565 |
| 11.3.32.1 | Helical gearbox                              | 565 |
| 11.3.32.2 | Parallel shaft gearbox                       | 566 |
| 11.3.32.3 | Bevel gearbox                                | 567 |
| 11.3.32.4 | Helical worm gearbox                         | 568 |
| 11.3.33   | Replacement part lists gearbox               | 569 |
| 11.3.33.1 | Helical gearbox E, sizes 39 - 89             | 569 |
| 11.3.33.2 | Helical gearbox D / Z, sizes 19 - 89         |     |
| 11.3.33.3 | Parallel shaft gearbox F, sizes 29 - 89      |     |
| 11.3.33.4 | Bevel gearbox B, sizes 19 - 49               | 574 |
| 11.3.33.5 | Bevel gearbox K, frame sizes 39 - 109        | 577 |
| 11.3.33.6 | Helical worm gearbox C, sizes 29 - 89        | 579 |
| 11.3.33.7 | SIMOLOC assembly system, sizes 29 - 89       | 582 |
| Appendix  |                                              | 585 |
| A.1       | Interconnecting signals in the converter     | 585 |
| A.1.1     | Fundamentals                                 |     |
| A.1.2     | Application example                          |     |
| A.2       | Acceptance tests for the safety functions    | 588 |
| A.2.1     | Recommended acceptance test                  |     |
| A.2.2     | Acceptance test STO (basic functions)        |     |
| A.2.3     | Machine documentation                        |     |
| A.3       | Manuals and technical support                | 592 |
| A.3.1     | Overview of the manuals                      |     |
| A.3.2     | Configuring support                          |     |
| A.3.3     | Product support                              |     |
| Index     |                                              |     |
|           |                                              |     |

Α

# **Fundamental safety instructions**

# 1.1 General safety instructions



#### MARNING

#### Electric shock and danger to life due to other energy sources

Touching live components can result in death or severe injury.

- Only work on electrical devices when you are qualified for this job.
- Always observe the country-specific safety rules.

Generally, the following steps apply when establishing safety:

- 1. Prepare for disconnection. Notify all those who will be affected by the procedure.
- 2. Isolate the drive system from the power supply and take measures to prevent it being switched back on again.
- 3. Wait until the discharge time specified on the warning labels has elapsed.
- 4. Check that there is no voltage between any of the power connections, and between any of the power connections and the protective conductor connection.
- 5. Check whether the existing auxiliary supply circuits are de-energized.
- 6. Ensure that the motors cannot move.
- 7. Identify all other dangerous energy sources, e.g. compressed air, hydraulic systems, or water. Switch the energy sources to a safe state.
- 8. Check that the correct drive system is completely locked.

After you have completed the work, restore the operational readiness in the inverse sequence.



#### 🔨 WARNING

Risk of electric shock and fire from supply networks with an excessively high impedance

Excessively low short-circuit currents can lead to the protective devices not tripping or tripping too late, and thus causing electric shock or a fire.

- In the case of a conductor-conductor or conductor-ground short-circuit, ensure that the short-circuit current at the point where the converter is connected to the line supply at least meets the minimum requirements for the response of the protective device used.
- You must use an additional residual-current device (RCD) if a conductor-ground short circuit does not reach the short-circuit current required for the protective device to respond. The required short-circuit current can be too low, especially for TT supply systems.



# \Lambda warning

Risk of electric shock and fire from supply networks with an excessively low impedance

Excessively high short-circuit currents can lead to the protective devices not being able to interrupt these short-circuit currents and being destroyed, and thus causing electric shock or a fire.

• Ensure that the prospective short-circuit current at the line terminal of the converter does not exceed the breaking capacity (SCCR or Icc) of the protective device used.



# 

#### Electric shock if there is no ground connection

For missing or incorrectly implemented protective conductor connection for devices with protection class I, high voltages can be present at open, exposed parts, which when touched, can result in death or severe injury.

• Ground the device in compliance with the applicable regulations.



# 

#### Electric shock due to connection to an unsuitable power supply

When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage. Contact with hazardous voltage can result in severe injury or death.

• Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages for all connections and terminals of the electronics modules.



### \Lambda WARNING

#### Electric shock due to damaged motors or devices

Improper handling of motors or devices can damage them.

Hazardous voltages can be present at the enclosure or at exposed components on damaged motors or devices.

- Ensure compliance with the limit values specified in the technical data during transport, storage and operation.
- Do not use any damaged motors or devices.



#### MARNING

#### Electric shock due to unconnected cable shield

Hazardous touch voltages can occur through capacitive cross-coupling due to unconnected cable shields.

Attach the cable shields at least on one side to the grounded housing potential.



# 

#### Arcing when a plug connection is opened during operation

Opening a plug connection when a system is operation can result in arcing that may cause serious injury or death.

• Only open plug connections when the equipment is in a voltage-free state, unless it has been explicitly stated that they can be opened in operation.



# WARNING

#### Electric shock due to residual charges in power components

Because of the capacitors, a hazardous voltage is present for up to 5 minutes after the power supply has been switched off. Contact with live parts can result in death or serious injury.

• Wait for 5 minutes before you check that the unit really is in a no-voltage condition and start work.

#### NOTICE

#### Damage to equipment due to unsuitable tightening tools.

Unsuitable tightening tools or fastening methods can damage the screws of the equipment.

- Be sure to only use screwdrivers which exactly match the heads of the screws.
- Tighten the screws with the torque specified in the technical documentation.
- Use a torque wrench or a mechanical precision nut runner with a dynamic torque sensor and speed limitation system.

# M WARNING

#### Active implant malfunctions due to electromagnetic fields

Converters generate electromagnetic fields (EMF) in operation. Electromagnetic fields may interfere with active implants, e.g. pacemakers. People with active implants in the immediate vicinity of an converter are at risk.

- As the operator of an EMF-emitting installation, assess the individual risks of persons with active implants.
- Observe the data on EMF emission provided in the product documentation.

# M WARNING

#### Unexpected movement of machines caused by radio devices or mobile phones

Using radio devices or mobile telephones in the immediate vicinity of the components can result in equipment malfunction. Malfunctions may impair the functional safety of machines and can therefore put people in danger or lead to property damage.

- Therefore, if you move closer than 20 cm to the components, be sure to switch off radio devices or mobile telephones.
- Use the "SIEMENS Industry Online Support app" only on equipment that has already been switched off.

#### NOTICE

#### Damage to motor insulation due to excessive voltages

When operated on systems with grounded line conductor or in the event of a ground fault in the IT system, the motor insulation can be damaged by the higher voltage to ground. If you use motors that have insulation that is not designed for operation with grounded line conductors, you must perform the following measures:

- IT system: Use a ground fault monitor and eliminate the fault as quickly as possible.
- TN or TT systems with grounded line conductor: Use an isolating transformer on the line side.

### \Lambda WARNING

#### Fire due to inadequate ventilation clearances

Inadequate ventilation clearances can cause overheating of components with subsequent fire and smoke. This can cause severe injury or even death. This can also result in increased downtime and reduced service lives for devices/systems.

• Ensure compliance with the specified minimum clearance as ventilation clearance for the respective component.

#### NOTICE

#### Overheating due to inadmissible mounting position

The device may overheat and therefore be damaged if mounted in an inadmissible position.

• Only operate the device in admissible mounting positions.

#### NOTICE

#### Device damage caused by incorrect voltage/insulation tests

Incorrect voltage/insulation tests can damage the device.

• Before carrying out a voltage/insulation check of the system/machine, disconnect the devices as all converters and motors have been subject to a high voltage test by the manufacturer, and therefore it is not necessary to perform an additional test within the system/machine.

# M WARNING

#### Unexpected movement of machines caused by inactive safety functions

Inactive or non-adapted safety functions can trigger unexpected machine movements that may result in serious injury or death.

- Observe the information in the appropriate product documentation before commissioning.
- Carry out a safety inspection for functions relevant to safety on the entire system, including all safety-related components.
- Ensure that the safety functions used in your drives and automation tasks are adjusted and activated through appropriate parameterizing.
- Perform a function test.
- Only put your plant into live operation once you have guaranteed that the functions relevant to safety are running correctly.

#### Note

#### Important safety notices for Safety Integrated functions

If you want to use Safety Integrated functions, you must observe the safety notices in the Safety Integrated manuals.

# MARNING 🕅

#### Malfunctions of the machine as a result of incorrect or changed parameter settings

As a result of incorrect or changed parameterization, machines can malfunction, which in turn can lead to injuries or death.

- Protect the parameterization against unauthorized access.
- Handle possible malfunctions by taking suitable measures, e.g. emergency stop or emergency off.

# 

#### Injury caused by moving or ejected parts

Contact with moving motor parts or drive output elements and the ejection of loose motor parts (e.g. feather keys) out of the motor enclosure can result in severe injury or death.

- Remove any loose parts or secure them so that they cannot be flung out.
- Do not touch any moving parts.
- Safeguard all moving parts using the appropriate safety guards.

## M WARNING

#### Fire due to inadequate cooling

Inadequate cooling can cause the motor to overheat, resulting in death or severe injury as a result of smoke and fire. This can also result in increased failures and reduced service lives of motors.

• Comply with the specified cooling requirements for the motor.

# M WARNING

#### Fire due to incorrect operation of the motor

When incorrectly operated and in the case of a fault, the motor can overheat resulting in fire and smoke. This can result in severe injury or death. Further, excessively high temperatures destroy motor components and result in increased failures as well as shorter service lives of motors.

- Operate the motor according to the relevant specifications.
- Only operate the motors in conjunction with effective temperature monitoring.
- Immediately switch off the motor if excessively high temperatures occur.



### 

#### Burn injuries caused by hot surfaces

In operation, the motor can reach high temperatures, which can cause burns if touched.

• Mount the motor so that it is not accessible in operation.

Measures when maintenance is required:

- Allow the motor to cool down before starting any work.
- Use the appropriate personnel protection equipment, e.g. gloves.

# 1.2 Equipment damage due to electric fields or electrostatic discharge

Electrostatic sensitive devices (ESD) are individual components, integrated circuits, modules or devices that may be damaged by either electric fields or electrostatic discharge.



#### NOTICE

#### Equipment damage due to electric fields or electrostatic discharge

Electric fields or electrostatic discharge can cause malfunctions through damaged individual components, integrated circuits, modules or devices.

- Only pack, store, transport and send electronic components, modules or devices in their original packaging or in other suitable materials, e.g conductive foam rubber of aluminum foil.
- Only touch components, modules and devices when you are grounded by one of the following methods:
  - Wearing an ESD wrist strap
  - Wearing ESD shoes or ESD grounding straps in ESD areas with conductive flooring
- Only place electronic components, modules or devices on conductive surfaces (table with ESD surface, conductive ESD foam, ESD packaging, ESD transport container).

# 1.3 Warranty and liability for application examples

Application examples are not binding and do not claim to be complete regarding configuration, equipment or any eventuality which may arise. Application examples do not represent specific customer solutions, but are only intended to provide support for typical tasks.

As the user you yourself are responsible for ensuring that the products described are operated correctly. Application examples do not relieve you of your responsibility for safe handling when using, installing, operating and maintaining the equipment.

# 1.4 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems, machines and networks. Such systems, machines and components should only be connected to an enterprise network or the internet if and to the extent such a connection is necessary and only when appropriate security measures (e.g. firewalls and/or network segmentation) are in place.

For additional information on industrial security measures that may be implemented, please visit

https://www.siemens.com/industrialsecurity (https://www.siemens.com/industrialsecurity).

#### 1.4 Security information

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends that product updates are applied as soon as they are available and that the latest product versions are used. Use of product versions that are no longer supported, and failure to apply the latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

https://www.siemens.com/industrialsecurity (<u>https://new.siemens.com/global/en/products/</u> services/cert.html#Subscriptions).

Further information is provided on the Internet:

Industrial Security Configuration Manual (<u>https://support.industry.siemens.com/cs/ww/en/</u>view/108862708)

## M WARNING

#### Unsafe operating states resulting from software manipulation

Software manipulations, e.g. viruses, Trojans, or worms, can cause unsafe operating states in your system that may lead to death, serious injury, and property damage.

- Keep the software up to date.
- Incorporate the automation and drive components into a holistic, state-of-the-art industrial security concept for the installation or machine.
- Make sure that you include all installed products into the holistic industrial security concept.
- Protect files stored on exchangeable storage media from malicious software by with suitable protection measures, e.g. virus scanners.
- On completion of commissioning, check all security-related settings.

#### 1.5 Residual risks of power drive systems

# 1.5 Residual risks of power drive systems

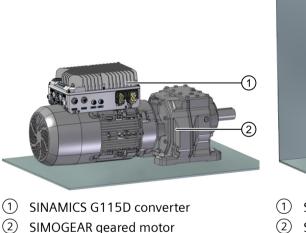
When assessing the machine- or system-related risk in accordance with the respective local regulations (e.g., EC Machinery Directive), the machine manufacturer or system installer must take into account the following residual risks emanating from the control and drive components of a drive system:

- 1. Unintentional movements of driven machine or system components during commissioning, operation, maintenance, and repairs caused by, for example,
  - Hardware and/or software errors in the sensors, control system, actuators, and cables and connections
  - Response times of the control system and of the drive
  - Operation and/or environmental conditions outside the specification
  - Condensation/conductive contamination
  - Parameterization, programming, cabling, and installation errors
  - Use of wireless devices/mobile phones in the immediate vicinity of electronic components
  - External influences/damage
  - X-ray, ionizing radiation and cosmic radiation
- 2. Unusually high temperatures, including open flames, as well as emissions of light, noise, particles, gases, etc., can occur inside and outside the components under fault conditions caused by, for example:
  - Component failure
  - Software errors
  - Operation and/or environmental conditions outside the specification
  - External influences/damage
- 3. Hazardous shock voltages caused by, for example:
  - Component failure
  - Influence during electrostatic charging
  - Induction of voltages in moving motors
  - Operation and/or environmental conditions outside the specification
  - Condensation/conductive contamination
  - External influences/damage
- 4. Electrical, magnetic and electromagnetic fields generated in operation that can pose a risk to people with a pacemaker, implants or metal replacement joints, etc., if they are too close
- 5. Release of environmental pollutants or emissions as a result of improper operation of the system and/or failure to dispose of components safely and correctly
- 6. Influence of network-connected communication systems, e.g. ripple-control transmitters or data communication via the network

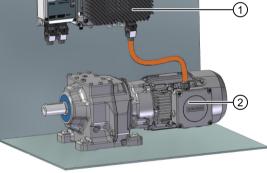
For more information about the residual risks of the drive system components, see the relevant sections in the technical user documentation.

1.5 Residual risks of power drive systems

# **Overview of the SINAMICS G115D drive**


# 2.1 System overview

The SINAMICS G115D distributed drive is a compact drive designed to provide an adaptable solution to conveyor technology applications.


The drive is a combination of a SINAMICS G115D converter and a SIMOGEAR geared motor and is available in the following two different variants:

- SINAMICS G115D Motor Mounted (Page 26)
  - Drive with the converter mounted on the SIMOGEAR geared motor
- SINAMICS G115D Wall Mounted (Page 28)
  - Drive with the converter mounted close to the SIMOGEAR geared motor

#### SINAMICS G115D Motor Mounted



SINAMICS G115D Wall Mounted



 SINAMICS G115D converter
 SIMOGEAR geared motor for SINAM-ICS G115D

#### Note

The SINAMICS G115D Wall Mounted drive refers only to the combination of a G115D wallmounted converter and a SIMOGEAR 2KJ8 geared motor for SINAMICS G115D; however, the SINAMICS G115D wall-mounted converter also supports other SIMOGEAR geared motors, SIMOTICS motors, or third-party motors.

#### 2.2 Scope of delivery

#### 2.2.1 SINAMICS G115D Motor Mounted

The SINAMICS G115D converter with the SIMOGEAR geared motor constitutes the SINAMICS G115D Motor Mounted drive. The delivery comprises at least the following:

- A ready-to-run drive with loaded firmware. The drive is delivered with the converter assembled with the geared motor. Options for upgrading and downgrading the firmware can be found on the Internet: Ki Firmware (https://support.industry.siemens.com/cs/ww/en/view/67364620)
- Compact Operating Instructions in German, English, and Chinese ٠
- Open-source software (OSS) with license terms saved in the converter ٠

#### Assignment of motor and converter

The converter is compatible with motors from frame size 71 to frame size 112.

|            |     |            | Converter rated power (kW) |      |      |     |     |     |     |     |
|------------|-----|------------|----------------------------|------|------|-----|-----|-----|-----|-----|
| frame size |     | power (kW) | FSA                        |      |      |     |     | FSB |     |     |
| IE2/IE3    | IE4 |            | 0.37                       | 0.55 | 0.75 | 1.1 | 1.5 | 2.2 | 3.0 | 4.0 |
| 71         | -   | 0.37       | Y                          | Δ    | Δ    |     |     |     |     |     |
| 80         | 80  | 0.55       |                            | Y    | Δ    | Δ   |     |     |     |     |
|            |     | 0.75       |                            |      | Y    | Δ   | Δ   |     |     |     |
| 90         | 90  | 1.1        |                            |      |      | Y   | Δ   | Δ   |     |     |
|            |     | 1.5        |                            |      |      |     | Y   | Δ   | Δ   |     |
| 100        | 112 | 2.2        |                            |      |      |     |     | Y   | Δ   | Δ   |
|            |     | 3.0        |                            |      |      |     |     |     | Y   | Δ   |
| 112        |     | 4.0        |                            |      |      |     |     |     |     | Y   |

- Motor speed range:



300 rpm ... 3000 rpm (2KJ8...-....-4...-.)

300 rpm ... 2610 rpm (2KJ8...-....-5...-.)

- Motor connection type: Y: star connection  $\Delta$ : delta connection

### Explanation on drive article number (example)

| 2           | K J 8 [                          | 1      | 0 3 -        | 2 E A  | 1                        | 1 -                                       | 3 G A 1 -                                           |  |  |  |  |
|-------------|----------------------------------|--------|--------------|--------|--------------------------|-------------------------------------------|-----------------------------------------------------|--|--|--|--|
| ſ           |                                  |        | Gearbox size |        |                          |                                           | Transmission ratio                                  |  |  |  |  |
|             | rbox type                        |        |              |        |                          |                                           |                                                     |  |  |  |  |
| 0           | Helical E, 1-stage               |        |              |        |                          |                                           |                                                     |  |  |  |  |
| 1           | Helical Z, 2-stage               |        |              |        | S                        | peed range                                |                                                     |  |  |  |  |
| 2           | Helical D, 3-stage               |        |              |        |                          | <b>3</b> Speed range 1:5                  |                                                     |  |  |  |  |
| 3           | Parallel shaft FZ, 2             |        | -            |        |                          |                                           | 4 Speed range 1:10                                  |  |  |  |  |
| 4           | Parallel shaft FD, 3             |        | -            |        |                          | 5 Speed range 1:8.7                       |                                                     |  |  |  |  |
| 5           | Bevel B, K, EHB, 2-              |        |              |        |                          |                                           |                                                     |  |  |  |  |
| 6           | Helical worm C, 2-               | -stag  | e            |        | l<br>Motor holding brake |                                           |                                                     |  |  |  |  |
| Г           |                                  |        |              |        |                          |                                           | ut brake                                            |  |  |  |  |
| Лot         | or type                          |        |              |        |                          | 1 With b                                  |                                                     |  |  |  |  |
| 2           | Asynchronous mo                  | tor, l | E2/IE3       | $\neg$ |                          |                                           |                                                     |  |  |  |  |
| 4           | Synchronous reluc                | ctand  | e motor, IE4 |        | l<br>Tem                 | <br>Temperature sensor                    |                                                     |  |  |  |  |
| Г           |                                  |        |              |        | 0                        | Nithout terr                              | nperature sensor                                    |  |  |  |  |
| ا<br>Not    | or shaft height                  |        |              |        | 1                        | Nith Pt1000                               |                                                     |  |  |  |  |
| с           | SH71                             | J      | SH100        |        |                          |                                           |                                                     |  |  |  |  |
| E           | SH80                             | L      | SH112        |        | Cam                      | rtor commo                                | unication and                                       |  |  |  |  |
| G           | SH90                             |        |              |        |                          | ction type                                |                                                     |  |  |  |  |
|             |                                  |        |              |        | В                        | /O control                                |                                                     |  |  |  |  |
| Γ           |                                  |        |              |        |                          |                                           | with cable glands                                   |  |  |  |  |
| Mot         | or power rating                  |        |              |        | С                        | /O control                                |                                                     |  |  |  |  |
| Α           | Power rating 1                   |        |              |        |                          | Connection                                | with connectors                                     |  |  |  |  |
|             |                                  |        |              |        | D                        | AS-Interface                              | 2                                                   |  |  |  |  |
| В           |                                  |        |              |        |                          | ~ .·                                      | with cable glands                                   |  |  |  |  |
| B<br>C      | _                                |        |              |        |                          | connection                                | with cable glands                                   |  |  |  |  |
|             | Power rating 2                   |        |              |        | E                        | AS-Interface                              | 2                                                   |  |  |  |  |
| c           | Power rating 2                   |        |              |        |                          | AS-Interface<br>Connection                | e with connectors                                   |  |  |  |  |
| C<br>F      | Power rating 2                   |        |              |        | E<br>F                   | AS-Interface<br>Connection<br>PROFINET, E | e with connectors therNet/IP                        |  |  |  |  |
| C<br>F<br>G | Power rating 2<br>Power rating 3 |        |              |        |                          | AS-Interface<br>Connection<br>PROFINET, E | with connectors<br>EtherNet/IP<br>with cable glands |  |  |  |  |

Special design (order code required)

### **Rating plate**

For more information about the drive rating plate, see Section "Rating plate for geared motors with SINAMICS G115D Motor Mounted (Page 444)".

#### **Further information**

For more information about the SIMOGEAR geared motors, refer to the following chapter:

Additional information on the SIMOGEAR geared motor (Page 429)

#### 2.2.2 SINAMICS G115D Wall Mounted

The SINAMICS G115D Wall Mounted drive is a combination of a G115D wall-mounted converter and a SIMOGEAR geared motor for G115D. The G115D wall-mounted converter and the 2KJ8 geared motor can only be ordered and delivered individually as drive system components.

You can also operate a SIMOGEAR 2KJ3 geared motor, a SIMOTICS motor, or a third-party motor with the G115D wall-mounted converter.

The delivery of G115D wall-mounted converter comprises at least the following:

- A ready-to-run converter with loaded firmware Options for upgrading and downgrading the firmware can be found on the Internet:
   Firmware (<u>https://support.industry.siemens.com/cs/ww/en/view/67364620</u>)
- Compact Operating Instructions in German, English, and Chinese
- Open-source software (OSS) with license terms saved in the converter

| Converter frame | Rated output power    | Article number |               |  |
|-----------------|-----------------------|----------------|---------------|--|
| size            | Based on High Overloa |                |               |  |
| FSA             | 0.37 kW               | 1.3 A          | 6SL352X0-3A.0 |  |
|                 | 0.55 kW               | 1.7 A          | 6SL352X0-5A.0 |  |
|                 | 0.75 kW               | 2.2 A          | 6SL352X0-7A.0 |  |
|                 | 1.1 kW                | 3.1 A          | 6SL352X1-1A.0 |  |
|                 | 1.5 kW                | 4.1 A          | 6SL352X1-5A.0 |  |
| FSB             | 2.2 kW                | 5.9 A          | 6SL352X2-2A.0 |  |
|                 | 3 kW                  | 7.7 A          | 6SL352X3-0A.0 |  |
|                 | 4 kW                  | 10.2 A         | 6SL352X4-0A.0 |  |
| FSC             | 5.5 kW                | 13.2 A         | 6SL352X5-5A.0 |  |
|                 | 7.5 kW                | 19 A           | 6SL352X7-5A.0 |  |

#### **Explanation on article numbers (examples)**

2 K J 8 1 0 3 - 2 E A 1 1 - 0 A A 1 - Z Gearbox size Gearbox type 0 Helical E, 1-stage Transmission ratio 1 Helical Z, 2-stage SIMOGEAR geared motor for 2 Helical D, 3-stage G115D 3 Parallel shaft FZ, 2-stage 4 Parallel shaft FD, 3-stage Speed range 5 Bevel B, K, EHB, 2-/3-stage Speed range 1:5 0 6 Helical worm C, 2-stage 1 Speed range 1: 10 2 Speed range 1: 8.7 Motor type Motor holding brake 2 Asynchronous motor, IE2/IE3 0 Without brake 4 Synchronous reluctance motor, IE4 1 With brake Motor shaft height с Temperature sensor SH71 J SH100 Е SH80 L SH112 0 Without temperature sensor G Ν 1 SH90 SH132 With Pt1000 sensor

Article number of SIMOGEAR geared motor for G115D (2KJ8...)

Motor power rating

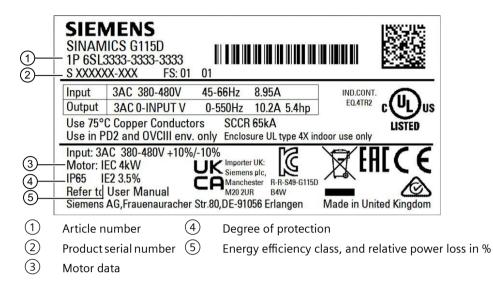


Special design (order code required)

Article number of SINAMICS G115D wall-mounted converter (6SL352...)

| <b>6</b> | SL352 0 - 1                                       | <b>X</b> | A 2                | 0               | - 3 A F 0             |  |  |  |  |  |  |
|----------|---------------------------------------------------|----------|--------------------|-----------------|-----------------------|--|--|--|--|--|--|
| Mo       | tor holding brake                                 |          |                    |                 |                       |  |  |  |  |  |  |
| 0        | 180 V DC electromechanical brake                  | Rate     | Rated output power |                 |                       |  |  |  |  |  |  |
| 1        | 400 V AC electromechanical brake                  | 0-3      | 0.37 kW            |                 |                       |  |  |  |  |  |  |
|          |                                                   | 0-5      | 0.55 kW            | EMC filter type |                       |  |  |  |  |  |  |
| <br>Use  | r interface options                               | 0-7      | 0.75 kW            | Α               | Filter C2             |  |  |  |  |  |  |
| 0        | With blanking cover                               | 1-1      | 1.1 kW             | _               |                       |  |  |  |  |  |  |
| -        |                                                   | 1-5      | 1.5 kW             |                 |                       |  |  |  |  |  |  |
| 1        | With repair switch                                | 2-2      | 2.2 kW             | nmunication     |                       |  |  |  |  |  |  |
| 2        | With local/remote control panel                   | 3-0      | 3.0 kW             | A               | AS-Interface          |  |  |  |  |  |  |
| 3        | With repair switch and local/remote control panel | 4-0      | 4.0 kW             | В               | I/O control           |  |  |  |  |  |  |
|          | control panel                                     | 5-5      | 5.5 kW             | F               | PROFINET, EtherNet/IP |  |  |  |  |  |  |
|          |                                                   | 7-5      | 7.5 kW             |                 | <u>k</u>              |  |  |  |  |  |  |
| _        |                                                   |          | •                  |                 |                       |  |  |  |  |  |  |

Interconnection type


| A0                      | Glanded variant, I/O control                                                                                             |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| A2                      | Glanded variant, fieldbus communication                                                                                  |
| A6                      | Glanded variant, I/O + fieldbus communication on M12 (like G110M)                                                        |
| <b>BO</b> <sup>1)</sup> | Connector variant without daisy chain (Q4/2 + 7/8")                                                                      |
| <b>B4</b> <sup>1)</sup> | Connector variant without daisy chain (Q4/2 + M12)                                                                       |
| C0                      | Connector variant without daisy chain (QUICKON + M12)                                                                    |
| D0                      | Connector variant without daisy chain (MQ15 + M12)                                                                       |
| <b>EO</b> <sup>1)</sup> | Connector variant with daisy chain (Q4/2 + 7/8")                                                                         |
| <b>E4</b> <sup>1)</sup> | Connector variant with daisy chain (Q4/2 + M12)                                                                          |
| H0                      | Glanded variant, I/O control, 24 V DC power supply unit integrated                                                       |
| H2                      | Glanded variant, fieldbus communication, 24 V DC power supply unit integrated                                            |
| H6                      | Glanded variant, I/O + fieldbus communication on M12 (like G110M), 24 V DC power supply unit integrated                  |
| К0                      | Connector variant without daisy chain (Q4/2), 24 V DC power supply unit integrated                                       |
| L0                      | Connector variant without daisy chain (QUICKON), 24 V DC power supply unit integrated                                    |
| М0                      | Connector variant without daisy chain (MQ15), 24 V DC power supply unit integrated                                       |
| N0                      | Connector variant with daisy chain (Q4/2), 24 V DC power supply unit integrated                                          |
| R0                      | Glanded variant, I/O + fieldbus communication on M12 (like G110M), Q8/0 for motor connection                             |
| R1                      | Glanded variant, I/O + fieldbus communication on M12 (like G110M), M12 for 24 V DC power connection $^{\mbox{\tiny 2)}}$ |

<sup>1)</sup> For UL-compliant applications, use on industrial machinery only.

 $^{\scriptscriptstyle 2)}$  The interconnection type R1 supports daisy-chain connections of the 24 V power supply.

#### **Rating plate**

The figure below shows an example of the rating plate attached to the side of the converter:



#### **Compatible motors**

#### Siemens motors that can be operated

The SINAMICS G115D wall-mounted converters are compatible with SIMOGEAR 2KJ8 motors from frame size 71 to frame size 132.

| Motor<br>frame size                           |                           | Motor rated power (kW) | Converter rated power (kW) |      |      |                             |                    |     |     |     |     |     |  |
|-----------------------------------------------|---------------------------|------------------------|----------------------------|------|------|-----------------------------|--------------------|-----|-----|-----|-----|-----|--|
|                                               |                           |                        | FSA                        |      |      |                             |                    | FSB |     |     | FSC |     |  |
| IE2/IE3                                       | IE4                       |                        | 0.37                       | 0.55 | 0.75 | 1.1                         | 1.5                | 2.2 | 3.0 | 4.0 | 5.5 | 7.5 |  |
| 71                                            | -                         | 0.37                   | Y                          | Δ    | Δ    |                             |                    |     |     |     |     |     |  |
| 80                                            | 80                        | 0.55                   |                            | Y    | Δ    | Δ                           |                    |     |     |     |     |     |  |
|                                               |                           | 0.75                   |                            |      | Y    | Δ                           | Δ                  |     |     |     |     |     |  |
| 90                                            | 90                        | 1.1                    |                            |      |      | Y                           | Δ                  | Δ   |     |     |     |     |  |
|                                               |                           | 1.5                    |                            |      |      |                             | Y                  | Δ   | Δ   |     |     |     |  |
| 100                                           | 112                       | 2.2                    |                            |      |      |                             |                    | Y   | Δ   | Δ   |     |     |  |
|                                               |                           | 3.0                    |                            |      |      |                             |                    |     | Y   | Δ   | Δ   |     |  |
| 112                                           |                           | 4.0                    |                            |      |      |                             |                    |     |     | Y   | Δ   | Δ   |  |
| 132                                           | -                         | 5.5                    |                            |      |      |                             |                    |     |     |     | Y   | Δ   |  |
|                                               |                           | 7.5                    |                            |      |      |                             |                    |     |     |     |     | Y   |  |
| - Motor speed range: - Motor connection type: |                           |                        |                            |      |      |                             |                    |     |     |     |     |     |  |
|                                               | 300 rpm 1500 rpm (2KJ80A) |                        |                            |      |      |                             | Y: star connection |     |     |     |     |     |  |
|                                               | 300 rpm 3000 rpm (2KJ81A) |                        |                            |      |      | $\Delta$ : delta connection |                    |     |     |     |     |     |  |
|                                               | 300 rpm 2610 rpm (2KJ82A) |                        |                            |      |      |                             |                    |     |     |     |     |     |  |

You can also connect SIMOGEAR 2KJ3 geared motors or other Siemens standard asynchronous motors, reluctance motors, or permanent magnet synchronous motor with moderate saturation to the wall-mounted converters.

For further information on the possible SIMOGEAR geared motors in combination with the SINAMICS G115D converter, refer to the following:

- The relevant chapter in this manual
   Additional information on the SIMOGEAR geared motor (Page 429)
- The relevant motor catalog
   Catalog D 31.2 (<u>https://support.industry.siemens.com/cs/ww/en/view/109750324</u>)
   Catalog D 50.1 (<u>https://support.industry.siemens.com/cs/ww/en/view/109746934</u>)
- Drive Technology Configurator (DT Configurator)
   DT Configurator (<u>http://www.siemens.com/dt-configurator</u>)

You can find information on further motors on the Internet:

Motors that can be operated (<u>https://support.industry.siemens.com/cs/ww/en/view/</u>100426622)

#### Third-party motors that can be operated

You can also operate the following non-Siemens motors with the SINAMICS G115D wallmounted converter:

- Standard asynchronous (geared) motors
- Most permanent magnet synchronous motors designed for converter operation with moderate saturation:
  - Surface-mounted permanent magnet synchronous motors
  - Integrated permanent magnet synchronous motors

Restrictions for permanent magnet synchronous motors:

- Continuous operation of a permanent magnet synchronous motor at speeds < 15 % of the rated speed is not possible.
- The load moment of inertia should be more than 20 % of the motor moment of inertia.
- Cogging torque < 4 % of the rated torque
- Sinusoidal EMF generator voltage with THD  $\leq$  2 %
- EMF generator voltage ≤ rated voltage of the converter
- Rated motor voltage  $\leq 0.9$  mains voltage

#### Multi-motor operation

Multi-motor operation involves simultaneously operating several motors from one converter. For standard asynchronous motors, multi-motor operation is generally permissible. Additional preconditions and restrictions relating to multi-motor operation are available on the Internet:

Multi-motor operation (<u>https://support.industry.siemens.com/cs/ww/en/view/84049346</u>)

# 2.3 Directives and standards

The following directives and standards are relevant for the SINAMICS G115D converters and the configurable SIMOGEAR 2KJ8 geared motors:

#### European Low Voltage Directive

The converters and motors fulfill the requirements stipulated in the Low-Voltage Directive 2014/35/EU, if they are covered by the application area of this directive.

#### **European Machinery Directive**

The converters and motors fulfill the requirements stipulated in the Machinery Directive 2006/42/EC, if they are covered by the application area of this directive.

However, the use of the converters and motors in a typical machine application has been fully assessed for compliance with the main regulations in this directive concerning health and safety.

#### Directive 2011/65/EU

The converter and motors fulfill the requirements of Directive 2011/65/EU relating to the restriction of the use of certain hazardous substances in electrical and electronic devices (RoHS).

#### European Directive on Waste Electrical and Electronic Equipment (WEEE)

The SINAMICS converter series complies with the 2012/19/EU directive on taking back and recycling waste electrical and electronic equipment.

#### **European EMC Directive**

The compliance of the converters and motors with the regulations of the Directive 2014/30/EU has been demonstrated by full compliance with the IEC/EN 61800-3.



(F

#### **UK Declaration of Conformity**

The converters and motors comply with the requirements for the market in Great Britain (England, Wales and Scotland).

#### EMC requirements for South Korea

The converters and motors with the KC marking on the rating plate satisfy the EMC requirements for South Korea.



#### Underwriters Laboratories (North American market)

Converters and motors provided with the test symbol displayed fulfill the requirements stipulated for the North American market as a component of drive applications, and are appropriately listed.



#### Eurasian conformity

The converters and motors comply with the requirements of the Russia/Belarus/Kazakhstan customs union (EAC).



#### Australia and New Zealand (RCM formerly C-Tick)

The converters and motors showing the test symbols fulfill the EMC requirements for Australia and New Zealand.

#### 2.4 Optional components

#### China RoHS

The converters and motors comply with the requirements of China RoHS. You can find additional information on the Internet:

China RoHS (<u>https://support.industry.siemens.com/cs/ww/en/view/109738656</u>)

#### **Quality systems**

Siemens AG employs a quality management system that meets the requirements of ISO 9001 and ISO 14001.

#### Standards that are not relevant



#### **China Compulsory Certification**

The SINAMICS G115D converters and the SIMOGEAR 2KJ8 geared motors do not fall in the area of validity of the China Compulsory Certification (CCC).

#### China Energy Label and Bureau of Indian Standards (BIS) Certification

The SIMOGEAR 2KJ8 geared motors are designed exclusively for converter operation, and the rated frequency of the 2KJ8 asynchronous motors is not 50 Hz; therefore, they do not fall in the area of validity of the Indian standard IS 12615:2018 and the China national standards GB 18613-2020 and CEL 007-2021.

#### Certificates for download

You can find all relevant certificates for download on the Internet:

Certificates (<u>https://support.industry.siemens.com/cs/us/en/ps/27867/cert</u>)

### 2.4 Optional components

#### 2.4.1 External braking resistor

The optional external braking resistor can be used to convert the regenerative energy produced by the motor into heat, thus giving greatly improved braking and deceleration capabilities.

#### Article number

| Article number     | Resistance | Continuous braking power | Converter frame<br>Size |
|--------------------|------------|--------------------------|-------------------------|
| 6SL3501-1BE32-0AA0 | 210 Ω      | 200 W                    | FSA                     |
| 6SL3501-1BE32-4AA0 | 220 Ω      | 240 W                    |                         |
| 6SL3501-1BE34-8AA0 | 200 Ω      | 480 W                    |                         |

2.4 Optional components

| Article number     | Resistance | Continuous braking power | Converter frame<br>Size |
|--------------------|------------|--------------------------|-------------------------|
| 6SL3501-1BE32-0BA0 | 160 Ω      | 200 W                    | FSB                     |
| 6SL3501-1BE32-4BA0 | 150 Ω      | 240 W                    |                         |
| 6SL3501-1BE36-0BA0 | 150 Ω      | 600 W                    |                         |
| 6SL3501-1BE36-0CA0 | 81 Ω       | 600 W                    | FSC                     |
| 6SL3501-1BE41-2CA0 | 72 Ω       | 1200 W                   |                         |

### **Further information**

For more information about the external braking resistor, refer to the following chapters:

- Mounting the external braking resistor (Page 44)
- Connecting the external braking resistor (Page 106)
- Dynamic braking (Page 309)
- Technical data of braking resistors (Page 404)
- Technical data of braking resistors (Page 417)

### 2.4.2 Connectors

#### **QUICKON** connector

The QUICKON connector is used for line supply connection to the connector variant (QUICKON) of the G115D converter.

| Article number     | Illustration | Interface             | Quantity | Tightening torque  |
|--------------------|--------------|-----------------------|----------|--------------------|
| 6SL3566-4MA00-0GA0 | 5            | Line supply (IN) - X1 | 1        | 7 Nm (62.0 lbf.in) |

#### **QUICKON** nut

The QUICKON nut is used for line supply connection to the connector variant (QUICKON) of the G115D converter.

| Article number     | Illustration | Interface             | Quantity | Tightening torque  |
|--------------------|--------------|-----------------------|----------|--------------------|
| 6SL3566-4NA00-0GA0 |              | Line supply (IN) - X1 | 1        | 7 Nm (62.0 lbf.in) |

2.4 Optional components

# 2.4.3 Glanded installation kit

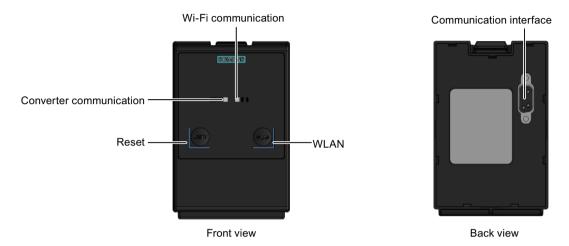
### Glanded installation kit for G115D Motor Mounted

| Article number     | Illustration                            | Interface                   | Cable<br>gland | Quanti-<br>ty          | Tightening<br>torque    |
|--------------------|-----------------------------------------|-----------------------------|----------------|------------------------|-------------------------|
| 6SL3566-2GM00-0GA0 | .3566-2GM00-0GA0                        | Line supply - X1/X3         | M25 × 1.5      | 2                      | 12 Nm<br>(106.2 lbf.in) |
|                    | 1 is                                    | 24 V power supply - X01/X02 | M20 × 1.5      | 2                      | 12 Nm<br>(106.2 lbf.in) |
| 1 1 1              | Digital inputs/outputs -<br>X07/X08/X05 | M16 × 1.5                   | 3              | 10 Nm<br>(88.5 lbf.in) |                         |

### Glanded installation kit for G115D Wall Mounted

| Article number     | Illustration                            | Interface                   | Cable<br>gland | Quanti-<br>ty          | Tightening<br>torque    |
|--------------------|-----------------------------------------|-----------------------------|----------------|------------------------|-------------------------|
| 6SL3566-2GW00-0GA0 | <b>3</b>                                | Line supply - X1/X3         | M25 × 1.5      | 2                      | 12 Nm<br>(106.2 lbf.in) |
|                    |                                         | Motor - X2                  | M25 × 1.5      | 1                      | 12 Nm<br>(106.2 lbf.in) |
|                    |                                         | 24 V power supply - X01/X02 | M20 × 1.5      | 2                      | 12 Nm<br>(106.2 lbf.in) |
|                    | Digital inputs/outputs -<br>X07/X08/X05 | M16 × 1.5                   | 3              | 10 Nm<br>(88.5 lbf.in) |                         |

### 2.4.4 Connector cover kit


### Connector cover kit for G115D converter with daisy chain

For the connector variant of the G115D converter with daisy chain, if you don't use daisy chain connection, cover the unused connectors with the optional connector cover kit to maintain the IP rating of the system.

| Article number     | Illustration | Interface                 | Connector caps               | Quantity |
|--------------------|--------------|---------------------------|------------------------------|----------|
| 6SL3566-2GA00-0GA0 |              | Line supply (OUT) - X3    | Q4/2 connector sealing cap   | 1        |
|                    |              | 24 V power supply (OUT) - | 7/8" connector sealing cap   | 1        |
|                    | X02          |                           | M12 L-code connector sealing | 1        |
|                    |              |                           | сар                          |          |

## 2.4.5 SINAMICS G120 Smart Access

The SINAMICS G120 Smart Access is a Wi-Fi based Web server module and an engineering tool. It has been designed for quick setup, parameterization, and diagnostics of the supported SINAMICS G120 converter or SINAMICS G115D converter.



Article number: 6SL3255-0AA00-5AA0

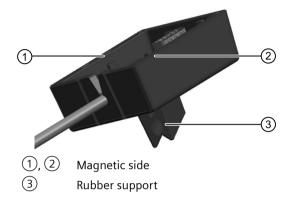
### **Further information**

For more information about the SINAMICS G120 Smart Access, see the SINAMICS G120 Smart Access Operating Instructions.

Overview of the manuals (Page 592)

### 2.4.6 SAM interface kit

#### Functionality


The SAM interface kit is used to connect the SINAMICS G120 Smart Access to the SINAMICS G115D converter, thus realizing Web-based access to the converter from a device connected to the G120 Smart Access.

Article number: 6SL3555-0XA00-0AA0



#### 2.4 Optional components

The SAM interface kit is designed with a rubber support and magnets, which allows you to easily mount the SINAMICS G120 Smart Access to the converter or remove it from the converter. The permissible operating temperature range for the SAM interface kit is from -10 °C to +60 °C. Vibration in operation fulfills Class 3M1 according to EN60721-3-3: 1995.



### Scope of delivery

- SAM interface kit for the SINAMICS G115D converter
- Compact Installation Instructions in English, Chinese, and German

#### **Further information**

For more information about mounting the G120 Smart Access to the G115D converter via the optional SAM interface kit, see the SINAMICS G120 Smart Access Operating Instructions.

Overview of the manuals (Page 592)

# Mounting



### 

#### Risk of burns and fire due to high temperatures

During operation and for a short time after switching the converter off, the surfaces reach temperatures that can inflict burns or start fires.

- Before attempting to touch the surfaces of the converter, ensure that enough time is given to allow the converter to cool down to a safe temperature to avoid personal injury.
- Remove any flammable materials from around the converter to reduce the risk of fire.

#### NOTICE

#### Converter damage due to misusage as a step or ledge

The converter is not designed to support a substantial weight. Substantial weight placed on the system could cause severe damage to the converter.

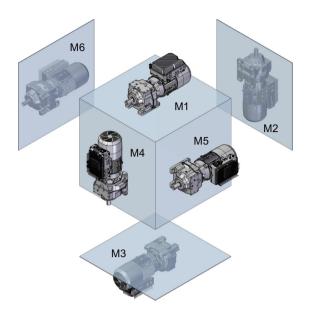
• Don't use the converter as a step or ledge.

# 3.1 Mounting the G115D Motor Mounted drive

### General instructions for installation

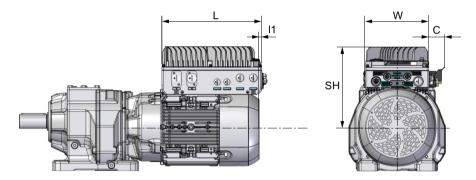
Observe the mounting instructions and maximum permissible vibration severity stated in the following chapter:

Installation notes (Page 437)


Note that the drive is delivered with the converter mounted on the geared motor.

### **Mounting positions**

The SINAMICS G115D Motor Mounted drive supports mounting positions M1 to M6. You mount the drive based on the desired mounting configuration for the geared motor.

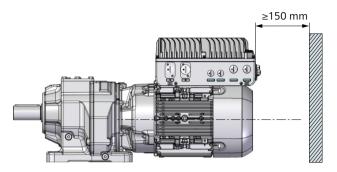

The figure below shows the SINAMICS G115D converter with SIMOGEAR geared motor in mounting positions M1 to M6.

#### 3.1 Mounting the G115D Motor Mounted drive



### **Mounting dimensions**

All dimensions are specified in millimeters (inches).




| Converter  | Motor      | Length     | Length      | Width     | Height      | Additional width <sup>1)</sup>  |
|------------|------------|------------|-------------|-----------|-------------|---------------------------------|
| frame size | frame size | L          | 11          | W         | SH          | С                               |
| FSA        | 71         | 240 (9.4)  | 53.5 (2.11) | 146 (5.7) | 177.5 (7.0) | Connector variant:              |
|            | 80         |            | 25 (0.98)   |           | 196 (7.7)   | +47.5 (1.87)                    |
|            | 90         |            | 0.5 (0.02)  |           | 201 (7.9)   | Glanded variant:                |
| FSB        | 90         | 285 (11.2) | 27 (1.06)   | 180 (7.1) | 206 (8.1)   | +30 (1.18)                      |
|            | 100        |            | 5 (0.2)     |           | 217.5 (8.6) | Converter with<br>24 V PSU: +60 |
|            | 112        |            | -3 (-0.12)  |           | 228.5 (9.0) | (2.36)                          |

<sup>1)</sup> The glanded variant of the converter provides no cable gland when delivered. The dimension data of glanded variant applies to the drive installed with the optional glanded installation kit.

### **Mounting clearance**

Maintain a minimum clearance distance of 150 mm (5.9 in) from the converter to the wall.



For mounting clearance distance around the motor, refer to the following chapter:

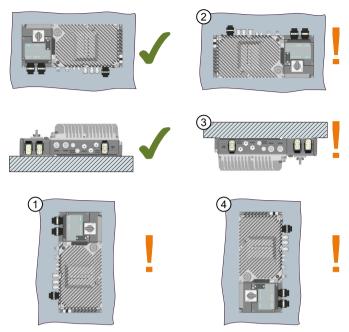
Installation conditions for the motor (Page 453)

### Dimensions of the geared motor

For further information on the dimensions of the geared motors, refer to the following documentation:

- The relevant chapter in this manual Additional information on the SIMOGEAR geared motor (Page 429)
- The relevant catalog
   Catalog D 31.2 (<u>https://support.industry.siemens.com/cs/ww/en/view/109750324</u>)
- Drive Technology Configurator (DT Configurator)
   DT Configurator (<u>http://www.siemens.com/dt-configurator</u>)
   You can generate and download data sheets, 2D dimension drawings and 3D CAD models of the geared motors.

# 3.2 Mounting the G115D Wall Mounted drive


### Mounting the converter

You must mount the converter on a metal backplane or on a frame.

#### **Mounting orientations**

The converter supports the following mounting orientations: correct ( $\checkmark$ ); permissible with restrictions (!)

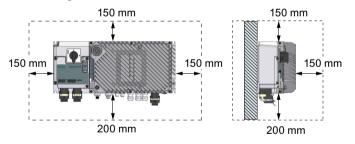
#### 3.2 Mounting the G115D Wall Mounted drive



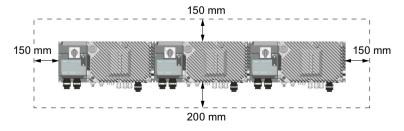
#### **Restrictions:**

For wall-mounted converter FSA and FSB ( $\leq$ 3 kW), the permissible output current is reduced for mounting orientations (1) to (4).




Derating the output current to 80% of the rated converter current is necessary.

④ Derating the output current to 70% of the rated converter current is necessary.

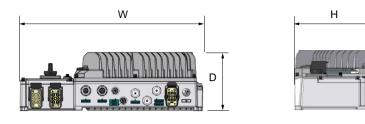

#### Mounting clearance

To guarantee full performance under all conditions, the minimum clearance distances are as follows:

• Wiring side of the converter: 200 mm (7.9 in) Non-wiring side of the converter: 150 mm (5.9 in)



• Side-by-side: no clearance distance is required between the converters.



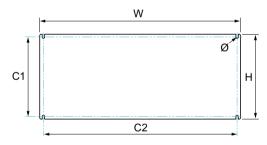

C

Performance and operation with reduced clearance distances require verification in the individual application.

### **Mounting dimensions**

All dimensions are specified in millimeters (inches).




| Frame | Rated power       | Width      | Height    | Depth                   | Additional height 1)                         |
|-------|-------------------|------------|-----------|-------------------------|----------------------------------------------|
| size  |                   | w          | Н         | D                       | С                                            |
| FSA   | 0.37 kW to 1.5 kW | 380 (15.0) | 156 (6.1) | 129 (5.1)               | Connector variant:                           |
| FSB   | 2.2 kW to 3 kW    | 425 (16.7) | 180 (7.1) | 134 (5.3)               | +47.5 (1.87)                                 |
|       | 4 kW              | 425 (16.7) | 180 (7.1) | 169 (6.7) <sup>2)</sup> | Glanded variant: +30<br>(1.18) <sup>3)</sup> |
| FSC   | 5.5 kW to 7.5 kW  | 425 (16.7) | 180 (7.1) | 169 (6.7) <sup>2)</sup> | Converter with<br>24 V PSU: +60 (2.36)       |

<sup>1)</sup> The glanded variant of the converter provides no cable gland when delivered. The dimension data of glanded variant applies to the converter installed with the optional glanded installation kit.

<sup>2)</sup> For FSB (4 kW) and FSC, the depth D includes the depth of the integrated fan.

<sup>3)</sup> The additional height of the glanded variant with Q8/0 connector is 42 mm (1.65 in).

#### **Drill patterns**



| Frame   | Drilling dimensions - mm (in) |              |           | Fixings             | Tightening tor- |
|---------|-------------------------------|--------------|-----------|---------------------|-----------------|
| size    | C1                            | C2           | Ø         |                     | que             |
| FSA     | 145 (5.7)                     | 364.5 (14.4) | 5.5 (0.2) | 4 × M5 bolts, wash- |                 |
| FSB/FSC | 168 (6.6)                     | 410 (16.1)   | 5.5 (0.2) | ers, nuts           | (22.1 lbf.in)   |

### Mounting the motor

The SINAMICS G115D wall-mounted converter supports SIMOGEAR geared motors, SIMOTICS motors, or third-party motors.

For detailed information on installation of a SIMOGEAR geared motor, refer to the following documentation:

- The relevant chapter in this manual
   Additional information on the SIMOGEAR geared motor (Page 429)
- The relevant catalog
   Catalog D 31.2 (<u>https://support.industry.siemens.com/cs/ww/en/view/109750324</u>)
   Catalog D 50.1 (<u>https://support.industry.siemens.com/cs/ww/en/view/109746934</u>)

# 3.3 Mounting the optional components

### 3.3.1 Mounting the external braking resistor

### M WARNING

### Risk of fire due to improper installation

Resistor surfaces reach high temperature during operation. A braking resistor which is not properly mounted can cause components overheat with associated risk of fire.

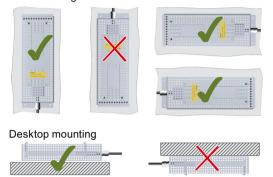
- Mount the resistor on non-flammable and heat-resistant surfaces only.
- Ensure that there are no flammable or combustible objects or materials close to the resistor.



## A CAUTION

#### Risk of burn due to high surface temperature

The braking resistor can reach a temperature of 300 °C in normal operation. Ratings given are absolute maximum and must not be exceeded. In the event of operation beyond specification or a fault, the resistor can reach a temperature of up to 600 °C. You can get burnt when touching the hot surface.

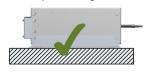

- Mount the resistor in such a way that it is not accessible and cannot be touched during operation.
- Allow sufficient distance from nearby materials to keep them at an acceptable temperature.
- Ensure that ventilation is provided.

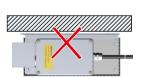
### **Mounting orientations**

Mounting orientations: correct ( $\checkmark$ ); incorrect ( $\thickapprox$ )

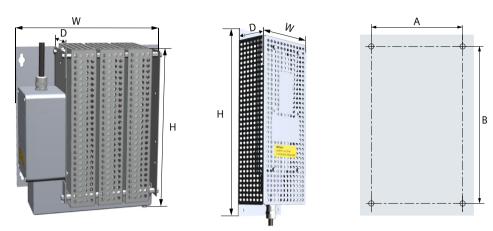
6SL3501-1BE32-0AA0; 6SL3501-1BE32-4AA0;
 6SL3501-1BE32-0BA0; 6SL3501-1BE32-4BA0
 Mount the braking resistor on a flat surface which has a minimum thickness of 2 mm and a minimum size of the braking resistor outline dimensions.

Wall mounting





 6SL3501-1BE34-8AA0; 6SL3501-1BE36-0BA0; 6SL3501-1BE36-0CA0; 6SL3501-1BE41-2CA0 Wall mounting












# Outline dimensions and drill pattern



| Article number     |            | Dimensions (mm/inch) |            |            |            |                 |
|--------------------|------------|----------------------|------------|------------|------------|-----------------|
|                    | Н          | W                    | D          | A          | В          | (kg/lb.)        |
| 6SL3501-1BE32-0AA0 | 320 (12.6) | 106 (4.2)            | 64 (2.5)   | 86 (3.4)   | 300 (11.8) | 1.56<br>(3.43)  |
| 6SL3501-1BE32-4AA0 |            |                      |            |            |            | 2.10<br>(4.62)  |
| 6SL3501-1BE34-8AA0 | 245 (9.6)  | 216 (8.5)            | 96.5 (3.8) | 197 (7.8)  | 176 (6.9)  | 3.89<br>(8.56)  |
| 6SL3501-1BE32-0BA0 | 320 (12.6) | 106 (4.2)            | 64 (2.5)   | 86 (3.4)   | 300 (11.8) | 1.56<br>(3.43)  |
| 6SL3501-1BE32-4BA0 |            |                      |            |            |            | 2.10<br>(4.62)  |
| 6SL3501-1BE36-0BA0 | 245 (9.6)  | 227 (8.9)            | 96.5 (3.8) | 208 (8.2)  | 176 (6.9)  | 3.42            |
| 6SL3501-1BE36-0CA0 |            |                      |            |            |            | (7.52)          |
| 6SL3501-1BE41-2CA0 | 245 (9.6)  | 349 (13.7)           | 96.5 (3.8) | 330 (13.0) | 176 (6.9)  | 5.47<br>(12.03) |

|                                | Fastening                    | Tightening torque    |
|--------------------------------|------------------------------|----------------------|
| Fixing to the mounting surface | 4 x M4 screws, nuts, washers | 2.5 Nm (22.1 lbf.in) |

# 3.3.2 Mounting the SINAMICS G120 Smart Access

To mount the SINAMICS G120 Smart Access to the G115D converter, you must use the optional SAM interface kit (Page 37).


# **Outline dimensions**

Sinamics G120 Smart Access

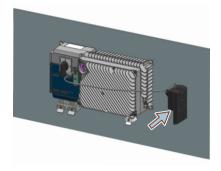
All dimensions are specified in millimeters.

### Mounting

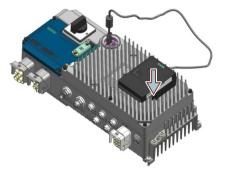
1. Mount the SAM interface kit to the SINAMICS G120 Smart Access and fix the two tightening screws to the prescribed torque (0.8 Nm, 0.6 lbf.in) by using a flat-bit screwdriver or a cross-tip screwdriver.



2. Remove the commissioning cover (3) from the G115D converter by using an S12 hex nut driver.

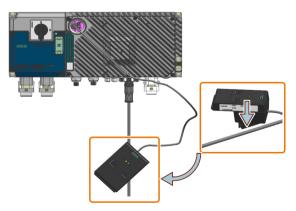



#### Note


Reattach the commissioning cover with a tightening torque of 2.5 Nm (22.1 lbf.in).

3. Choose one of the following three methods according to the applicable converter mounting position to connect the G120 Smart Access fitted with the SAM interface kit to the converter:

- Method 1 (applicable to all permissible mounting positions)
  - Attach the G120 Smart Access to a metallic plate via one magnetic side of the SAM interface kit and then connect the SAM interface kit cable to the USB interface on the converter.




 Method 2 (applicable only to the mounting position with the heatsink facing upwards) Snap the rubber support of the SAM interface kit onto the converter heatsink and then connect the SAM interface kit cable to the USB interface on the converter.



Method 3 (applicable only to the mounting position with the cable outlets facing downwards)

Snap the rubber support of the SAM interface kit onto the PROFINET cable or the I/O cable connected to the converter and then connect the SAM interface kit cable to the USB interface on the converter.



### **Further information**

For more information about the SINAMICS G120 Smart Access and the SAM interface kit, see SINAMICS G120 Smart Access Operating Instructions.

### Mounting

3.3 Mounting the optional components

Cverview of the manuals (Page 592)

# Wiring

# 4.1 EMC installation guidelines

### 4.1.1 Connections and interference suppression

Set up reliable connections and make sure that all connections cannot be interrupted. Screwed connections on painted or anodized metal components must be made either by means of special contact washers, which penetrate the isolating surface and establish a metallically conductive contact, or by removing the isolating surface on the contact points.

Contactor coils, relays and solenoid valves must have interference suppressors to reduce highfrequency radiation when the contacts are opened (RC elements or varistors for AC current operated coils, and freewheeling diodes for DC current-operated coils). The interference suppressors must be connected directly on each coil.

### 4.1.2 Basic EMC rules

### Measures to limit Electromagnetic Interference (EMI)

In the following list are the necessary measures that must be taken to ensure the correct installation of the converter within a system, which should minimize the effects of EMI.

#### Cables

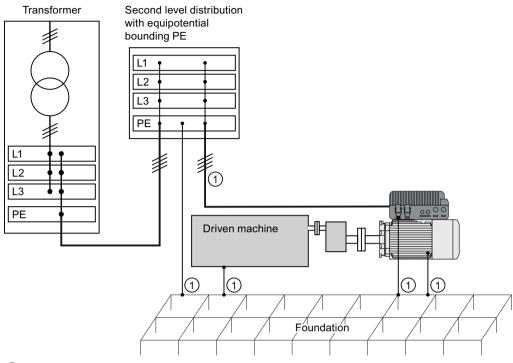
- Keep all cable lengths to the minimum possible length; avoid excessive cable lengths.
- Route always signal and data cables, as well as their associated equipotential bonding cables, in parallel and with as short a distance as possible.
- Do not route signal and data cables parallel to the line supply and motor cables.
- Signal and data cables should not cross the line supply and motor cables; if crossing is necessary, they should cross at an angle of 90  $^\circ.$
- Shield signal and data cables.
- Route particularly sensitive signal cables, such as setpoint and actual value cables, with optimum shield bonding at both ends and without any interruptions of the shield.
- Ground spare wires for signal and data cables at both ends.

#### 4.1 EMC installation guidelines

- Route all power cables (line supply and motor cables) separately from signal and data cables. The minimum distance should be approximately 25 cm. Exception: hybrid motor cables with integrated shielded temperature sensor and brake control wires are allowed.
- For the wall-mounted converters, shield the motor cable between converter and motor. We recommend shielded cables with symmetrical three-phase conductors (L1, L2, and L3) and an integrated, 3-wire, and symmetrically arranged PE conductor.

### **Cable shields**

- Use shielded cables with finely stranded braided shields. Foil shields are not suitable since they are much less effective.
- Connect shields to the grounded housings at both ends with excellent electrical conductivity and a large contact area.
- Bond the cable shields to the plug connectors of the converter.
- Do not interrupt cable shields by intermediate terminals.
- For power cables as well as signal and data cables, the cable shields should be connected by means of suitable EMC glands. The cable shields must be connected to the shield bonding options for cables and the unit housing respectively with excellent electrical conductivity and a large contact area.
- Use only metallic or metallized connector housings for shielded data cables.


### 4.1.3 Equipotential bonding

Equipotential bonding within the drive system has to be established by connecting all electrical and mechanical drive components (transformer, motor and driven machine) to the grounding system. These connections are established by means of standard heavy-power PE cables, which do not need to have any special high-frequency properties.

In addition to these connections, the converter (as the source of the high-frequency interference) and all other components in each drive system (motor and driven machine) must be interconnected with respect to a high-frequency point of view. For this purpose cables with good high-frequency properties must be used.

### Grounding and high-frequency equipotential bonding measures

The following figure illustrates all grounding and high-frequency equipotential bonding measures using an example of the SINAMICS G115D Motor Mounted drive.



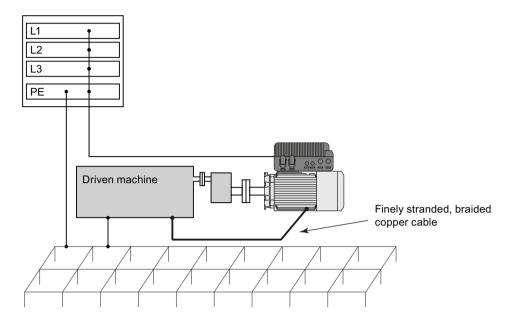
(1) Conventional grounding system without special high-frequency properties

The ground connections 1 represent the conventional grounding system for the drive components. They are made with standard, heavy-power PE conductors without special high-frequency properties and ensure low frequency equipotential bonding as well as protection against injury.

The line supply cable of the converter can be unshielded. The converter has to be grounded by this cable.

The converter enclosure provides high-frequency equipotential bonding between the converter and the motor.

The connection provides solid bonding for high-frequency currents between the metal body of the converter and the unpainted metal mounting frame. This connection should be made with short, finely stranded, braided copper wires.


### Additional measures

Finely stranded, braided copper cables have to be routed in parallel with the cable shields in the following cases:

- Old installations with already existing unscreened cables
- Cables with poor high-frequency properties
- Installations with bad grounding systems

4.2 Permissible line supplies

The connections in the following figure provide a solid, high-frequency bonding between the driven machine and the converter.

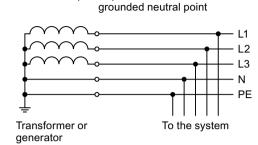


#### **Further information**

Additional information about EMC-compliant installation is available on the Internet:

EMC installation guideline (<u>https://support.industry.siemens.com/cs/ww/en/view/</u>60612658)

# 4.2 Permissible line supplies


#### Note

#### Fault protection in case of insulation failure for the motor circuit

The electronic overcurrent trip of the converter complies with the requirements laid down in IEC 60364-4-41:2005/AMD1:2017 Section 411 and Appendix D for protection against electric shock.

- Observe the installation specifications provided in this manual.
- Observe the applicable installation standards.
- Ensure the continuity of the protective conductor.

### 4.2.1 TN line system



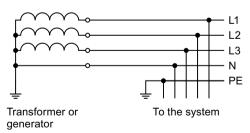
Example: Separate transfer of N and PE,

A TN system transfers the PE protective conductor to the installed plant or system using a cable.

The TN system can transfer the neutral conductor N and the PE protective conductor either separately or combined.

Generally, in a TN system the neutral point is grounded. There are versions of a TN system with a grounded line conductor, e.g. with grounded L1.

G115D drives can only be operated in a line system with grounded neutral point and are not suitable for corner-grounded networks.


#### Converter operated on a TN system

| Converter                 | Line supply with grounded neutral |   |   |  |  |
|---------------------------|-----------------------------------|---|---|--|--|
| Frame size                | А                                 | В | С |  |  |
| Integrated line filter C2 | ✓                                 | ✓ | ✓ |  |  |

✓ Operation permissible

#### 4.2.2 TT line system

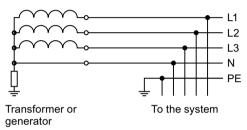
Example: Transfer of N, grounded neutral point



In a TT system, the transformer grounding and the installation grounding are independent of one another.

There are TT supplies where the neutral conductor N is either transferred – or not.

4.2 Permissible line supplies


#### Converter operated on a TT system

| Converter                 | Line supply with grounded neutral |   |   |
|---------------------------|-----------------------------------|---|---|
| Frame size                | А                                 | В | С |
| Integrated line filter C2 | ✓                                 | ✓ | ✓ |

✓ Operation permissible

### 4.2.3 IT line system

Example: Transfer of N, impedance with respect to PE protective conductor



In an IT system, all of the conductors are insulated with respect to the PE protective conductor – or connected to the PE protective conductor through an impedance.

There are IT systems with and without transfer of the neutral conductor N.

#### Converter operated on an IT system

| Converter                 | Line supply with grounded neutral |                 |                  |
|---------------------------|-----------------------------------|-----------------|------------------|
| Frame size                | А                                 | В               | С                |
| Integrated line filter C2 | ✓ <sup>1)</sup>                   | ✓ <sup>1)</sup> | ✓ <sup>2</sup> ) |

 $\checkmark$  <sup>1)</sup> Operation permissible once the functional grounding screw(s) has been removed

 $\checkmark$  <sup>2)</sup> Operation permissible once the functional grounding screws and cable have been removed If the functional grounding screw or cable has been removed, the converter no longer fulfills the requirements of class C2.

If you wish to use the converter in an IT line system, you must disconnect the capacitor with earth by removing the functional grounding connections from the converter.

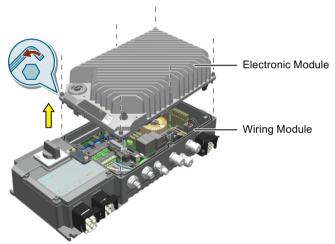
### Removing functional grounding connections from the converter

### Precondition

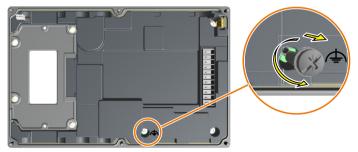
Switch off the converter power supply before removing the functional grounding.



### 🔨 warning

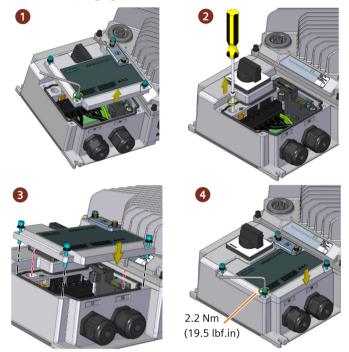

#### Electric shock as a result of a residual charge in power components

After the power supply has been switched off, it takes up to five minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level. Therefore, touching the converter immediately after powering off can result in electric shock due to residual charge in the power components.

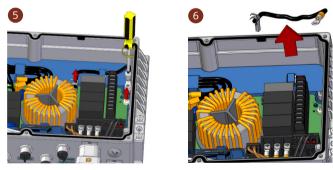

• Check the voltage at the converter connections before you remove the functional grounding.

#### Procedure

1. Release the retaining screws (6 x M4) for the Electronic Module by using a 3 mm allen key, and then remove the module.




2. Remove the functional grounding screw marked with the A symbol from the back side of the Electronic Module.




#### 4.2 Permissible line supplies

- 3. If you are using a wall-mounted converter, in addition to removing the screw from the Electronic Module as above, remove the grounding screw and the grounding cable from the Wiring Module.
  - For the wall-mounted converter FSA/FSB, first release the four retaining screws to remove the blanking cover or the local/remote control (LRC) panel from the Wiring Module (1). Then remove the functional grounding screw marked with the f symbol (2). After that, re-attach the blanking cover or the LRC panel with a tightening torque of 2.2 Nm (19.5 lbf.in) (3(4)) to make sure that the converter and the motor can work properly.



 For the wall-mounted converter FSC, in addition to removing the screw from the Wiring Module, also remove the functional grounding cable from the Wiring Module (56).



4. Re-attach the Electronic Module with a tightening torque of 2.5 Nm (22.1 lbf.in).You have removed the functional grounding from the converter.

#### 4.3 Requirements for the protective conductor

# 4.3 Requirements for the protective conductor

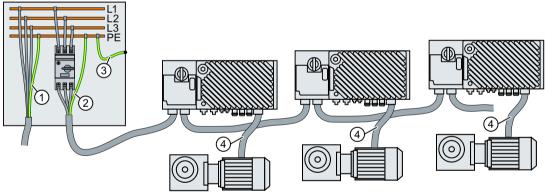
A high leakage current flows through the protective conductor in converter operation. The protective conductor of the converter must not be interrupted for safe touch protection in converter operation.

This primarily results in requirements for the minimum conductor cross-section of the protective conductor.

No restriction applies to the length of the protective conductor for touch protection. However, short protective conductors are advantageous for EMC-compliant installation.



# 🔨 WARNING


### Electric shock due to interrupted protective conductor

The drive components conduct a high leakage current via the protective conductor. Touching conductive parts when the protective conductor is interrupted can result in death or serious injury.

• Comply with the requirements for the protective conductor.

### Dimensioning the protective conductor

The figure below takes the SINAMICS G115D Wall Mounted drive as an example.



- 1 Protective conductor for mains supply cables
- 2 Protective conductor for converter line supply cables
- ③ Protective conductor between PE and the control cabinet
- (4) Protective conductor for motor cables

The minimum cross-section of the protective conductor  $(1) \dots (3)$  depends on the cross-section of the mains supply cable and the minimum cross-section of the protective conductor (4) depends on the cross-section of the motor cable:

 Mains supply or motor cable ≤ 16 mm<sup>2</sup> ⇒ Minimum cross-section of the protective conductor = cross-section of the mains supply or motor cable 4.5 Operation with residual current protective device (RCD)

Additional requirements placed on the protective conductor  $\bigcirc$ :

- For permanent connection, the protective conductor must fulfill at least one of the following conditions:
  - The protective conductor is routed so that it is protected against damage along its complete length.
    - (Cables routed inside control cabinets or enclosed machine housings are considered to be adequately protected against mechanical damage.)
  - As a conductor of a multi-conductor cable, the protective conductor has a cross-section  $\geq$  2.5 mm<sup>2</sup> Cu.
  - For an individual conductor, the protective conductor has a cross-section  $\ge 10 \text{ mm}^2 \text{ Cu}$ .
  - The protective conductor consists of two individual conductors with the same crosssection.
- When connecting a multi-conductor cable using an industrial plug connector according to EN 60309, the protective conductor must have a cross-section of ≥ 2.5 mm<sup>2</sup> Cu.

# 4.4 Requirements for branch circuit protection

### **Requirements for UL-compliant installation**

The integral solid-state short-circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.

# 4.5 Operation with residual current protective device (RCD)



### 🔨 WARNING

#### Fire or electric shock due to unsuitable residual-current protective devices

The converter may create a current through the protective conductor. The current through the protective conductor can cause the residual current device (RCD) or residual current monitor (RCM) to incorrectly trip (nuisance trip). In the case of a ground fault, the fault current can contain a DC component, which prevents the RCD or RCM from tripping, with the risk of subsequent fire or electric shock.

Use the protection and monitoring devices recommended in the documentation.

### Protection and monitoring equipment

To provide protection against short-circuit, use the recommended overcurrent protective devices (fuses, circuit breakers etc.).

Branch protection and short-circuit strength according to UL and IEC (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867</u>)

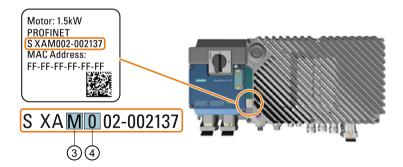
If the earth fault loop impedance of the line supply at the infeed point is too high to ensure that the overcurrent protective device disconnects within the stipulated time in the case of insulation failure (ground fault, fault to frame), then you must use additional residual current protective devices RCD, type B.

In order that an RCD does not unnecessarily trip as a result of operational leakage currents, the following preconditions must be fulfilled:

- The neutral point of the line supply is grounded.
- A dedicated RCD is used for each converter.
- Use a universal current-sensitive residual current protective device (RCD, RCM, ELCB or RCCB), type B, for example, Siemens SIQUENCE RCCB. Connect the RCCB in series with the overcurrent protective devices.
- Rated residual current is 300 mA.
- The motor cables are maximum 15 m (49 ft) and are shielded. Additional information about motor cables:
   Maximum parmissible cable length (Page 70)

Maximum permissible cable length (Page 70)

# 4.6 Forming DC link capacitors


#### Introduction

You have to reform the DC link capacitors if the converter/Electronic Module has been stored for more than one year. Non-formed DC link capacitors can damage the converter in operation.

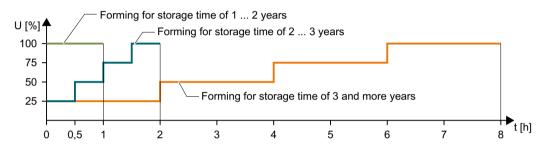
### Precondition

The converter/Electronic Module has not yet been used, and according to the production date it was made over a year ago.

The production date is coded in the 3rd and 4th digit of the serial number. You may find the serial number easily on the service information label at the front of the Electronic Module.

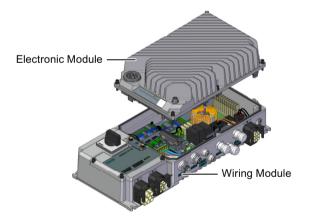


#### Production year and month


• Example: Serial number S XAM002-002137 → Production date October 2020

| Digit ③ | Production year | Digit ④ | Production month  |
|---------|-----------------|---------|-------------------|
| М       | 2020            | 1 9     | January September |
| N       | 2021            | 0       | October           |
| Р       | 2022            | N       | November          |
| R       | 2023            | D       | December          |
|         |                 |         |                   |

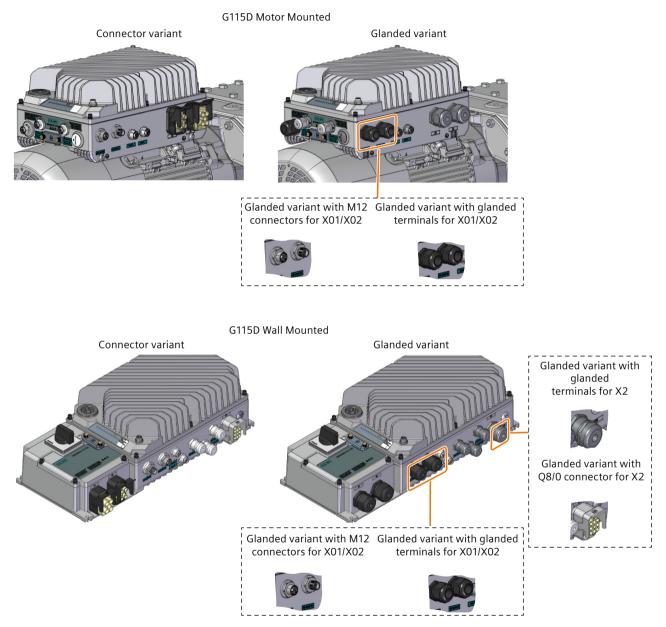
### **Function description**


#### Procedure

You form the DC link capacitors by supplying the converter with a line voltage of  $\leq$  100% of the rated voltage for a defined time.



# 4.7 Overview of the converter interfaces


A G115D converter consists of an Electronic Module and a Wiring Module.

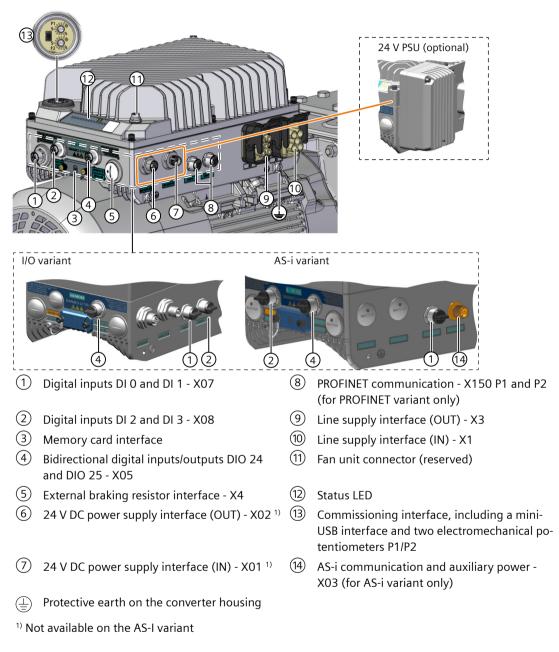


The Electronic Module is available in PROFINET variant, AS-i variant, and I/O Control (without fieldbus communication) variant. The Wiring Module is available in glanded variant and connector variant.

Depending on the variant ordered, the converter is equipped with plug-in sockets and/or blanking caps (for wiring with cable glands).

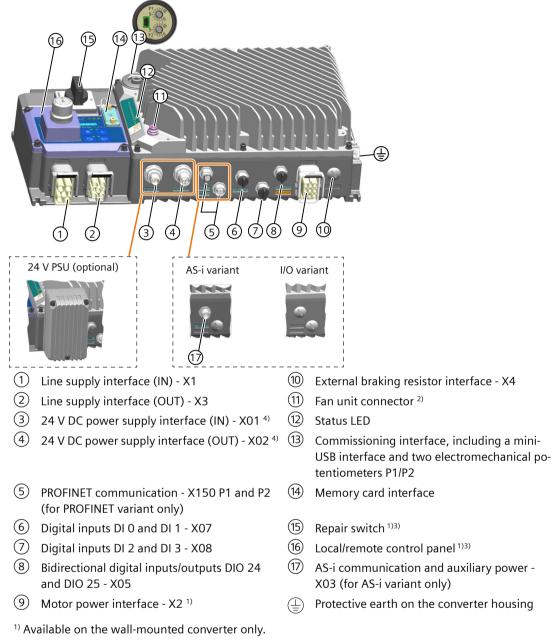
For the connector variant, the converter is all wired up internally when delivered and all that is required is the external wiring of the system. For the glanded variant, make sure you wire the terminals and route the cables inside the Wiring Module and fix with the cable glands.




Note that the converters of glanded variant provide no cable glands but blanking caps at delivery for all glanded interfaces.

#### **Connection interface overview**

The locations of the converter interfaces may vary depending on the variant ordered.


#### Motor-mounted converter

The figure below shows an example of PROFINET variant of the motor-mounted converter with plug-in sockets:



#### Wall-mounted converter

The figure below shows an example of PROFINET variant of the wall-mounted converter with plug-in sockets:



- <sup>2)</sup> The fan connector is designed for use in the wall-mounted converter FSB (4 kW)/FSC.
- <sup>3)</sup> Optionally available on the wall-mounted converter only.
- <sup>4)</sup> Not available on the AS-i variant.

#### Note

The electromechanical potentiometers, the repair switch, and the local/remote control panel on the converter do not provide protection against unauthorized access. You must take appropriate measures to protect the converter against unauthorized operation or changes to the settings.

### Terminal layout of the Wiring Module

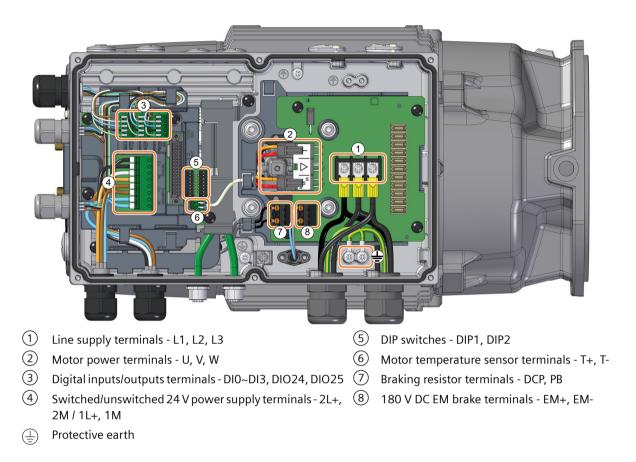
If you use the glanded variant of the converter, you must wire all the necessary terminals inside the Wiring Module.

#### NOTICE

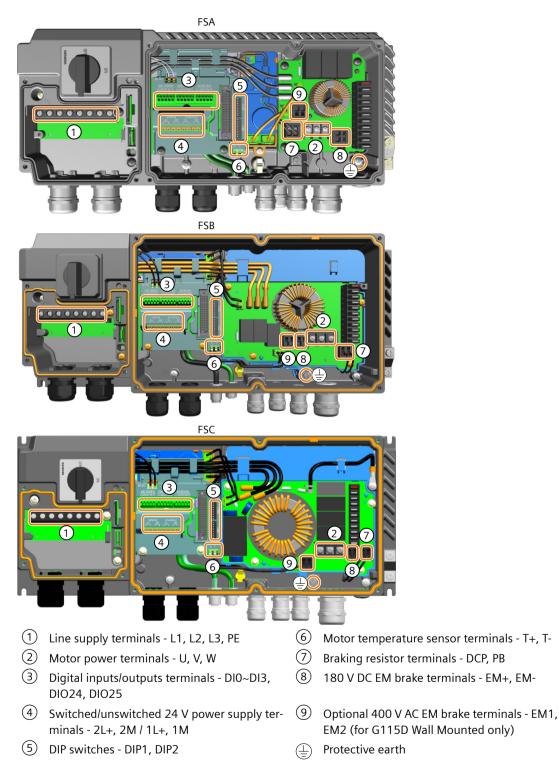
#### Device damage due to alteration to the factory connections

For the motor-mounted converter, the motor terminals inside the Wiring Module are already wired up in the factory. Any alteration to the factory connections can result in device malfunctions or damage.

• Do not alter the motor connections of the motor-mounted converter unless otherwise explicitly instructed.


The figures below give an overview of the terminals on the motor-mounted converter and the wall-mounted converter respectively.

Note that the converters of glanded variant provide no cable glands but blanking caps at delivery for all glanded interfaces.


Applicable glanded installation kits are available as optional components and can be ordered with article numbers. For more information, refer to the following chapter:

Glanded installation kit (Page 36)

#### Motor-mounted converter



#### Wall-mounted converter



# 4.8 Cables and connectors

#### Note

#### **NFPA** compatibility

These devices are intended only for installation on industrial machines in accordance with the "Electrical Standard for Industrial Machinery" (NFPA79). Due to the nature of these devices they may not be suitable for installation accordance with the "National Electrical Code" (NFPA70).

#### Note

#### Mains supply impedance

To ensure trouble free operation we recommend the mains supply impedance is less than 4% (RSC > 25).

#### Cable, connectors and tools specifications

The detailed specifications for the cables, connectors and tools required to manufacture the necessary cables for the SINAMICS G115D are listed in the following documents and can be accessed using the relevant link:

Supplementary products (cables, connectors and accessories) (<u>https://support.industry.siemens.com/cs/ww/en/view/65355810</u>)

The connections that are detailed in this section relate to the physical connections that exist on the converter. Information for the preparation and construction of the individual connectors have separate detailed instructions delivered with the ordered parts, directly from the manufacturers.

For IEC-compliant applications, use the cable with the temperature rating specified in the following table.

For UL and cUL-compliant applications, use only the copper wires with the permissible temperature of 75  $^\circ$ C.

| Cable    | Converter variant | Cable temperature rating |                     |                   |             |
|----------|-------------------|--------------------------|---------------------|-------------------|-------------|
|          |                   | IEC-compliant            |                     | UL-compliant      |             |
|          |                   | No daisy chain           | Daisy chain         | No daisy<br>chain | Daisy chain |
| Line ca- | Glanded variant   | 75 ℃                     | 105 °C              | 75 ℃              |             |
| ble      | Connector variant |                          | 75 °C               |                   |             |
| 24 V ca- | Glanded variant   | 75 °C                    | 105 °C              | 75 °C             |             |
| ble      | Connector variant |                          | 75 °C <sup>1)</sup> |                   |             |

<sup>1)</sup> When the surrounding temperature exceeds 40 °C, cables with the temperature rating of 90 °C are required.

#### **Further information**

For information about the QUICKON connectors required for the corresponding G115D converter variant, see Section "Connectors (Page 35)".

4.8 Cables and connectors

# 4.8.1 Maximum permissible cable length

### Maximum length for motor cables

The permissible length of the motor cable depends on the quality of the motor power cable and the converter pulse frequency. The values specified below are applicable for high quality cables, such as CY100 or similar, and for the pulse frequencies set in the factory.

Pulse frequency (Page 422)

If you set other pulse frequencies, then you must ensure that the EMC category is complied with on the plant or system side.

| Cable type             | Shield                                               | Max. length (for converter w<br>filter) | ith integrated line |
|------------------------|------------------------------------------------------|-----------------------------------------|---------------------|
| Second environment, C2 |                                                      |                                         |                     |
| Motor cable            | Shielded, coverage $\ge 85\%$ , rated voltage 1000 V | Wall-mounted variant                    | 15 m (49 ft.)       |

For permissible motor cable length under other pulse frequencies, see the following chapter:

Derating of motor cable length based on pulse frequency and surrounding temperature (Page 423)

### Maximum length for control cables

| Cable type           | Shield                         | Max. length   |
|----------------------|--------------------------------|---------------|
| Digital input/output | Unshielded/shielded            | 30 m (98 ft.) |
| Encoder              | Shielded, coverage $\geq 85\%$ | 30 m (98 ft.) |

#### Maximum length for communication cables

| <b>Communications protocol</b> | Transfer rate or cable type | Max. length     |
|--------------------------------|-----------------------------|-----------------|
| PROFINET                       | CAT5e network cable         | 100 m (328 ft.) |
| AS-i                           | Maximum length per segment  | 100 m (328 ft.) |

The maximum length of any one segment on the AS-i network is normally 100 m; however, there are a number of devices that allow the overall length of AS-i network to be extended. For more information, see the FAQ at the following link:

Options for extending the AS-i fieldbus beyond 100 m (<u>https://</u> <u>support.industry.siemens.com/cs/ww/en/view/21189154</u>)

# 4.8.2 Cable cross-sections and cable lugs

# Line supply terminals (L1/L2/L3/PE)

#### **Connector variant**

| Frame size   | Terminal                | Cross-section for stranded conductor                            |  |  |  |
|--------------|-------------------------|-----------------------------------------------------------------|--|--|--|
| Motor-mount  | Motor-mounted converter |                                                                 |  |  |  |
| FSA          | L1/L2/L3/PE             | 4 × 1.5 mm <sup>2</sup> to 4 mm <sup>2</sup> (AWG 14 to AWG 12) |  |  |  |
| FSB          |                         | 4 × 2.5 mm <sup>2</sup> to 4 mm <sup>2</sup> (AWG 13 to AWG 12) |  |  |  |
| Wall-mounted | d converter             |                                                                 |  |  |  |
| FSA          | L1/L2/L3/PE             | 4 × 1.5 mm <sup>2</sup> to 6 mm <sup>2</sup> (AWG 14 to AWG 10) |  |  |  |
| FSB          |                         | 4 × 2.5 mm <sup>2</sup> to 6 mm <sup>2</sup> (AWG 13 to AWG 10) |  |  |  |
| FSC          |                         | 4 × 4 mm <sup>2</sup> to 6 mm <sup>2</sup> (AWG 11 to AWG 10)   |  |  |  |

#### **Glanded variant**

| Frame<br>size | Terminal       |            | Cable lug | Cross-section for stran-<br>ded conductor                             | Screw tightening<br>torque |  |
|---------------|----------------|------------|-----------|-----------------------------------------------------------------------|----------------------------|--|
| Motor-m       | ounted conver  | ter        |           |                                                                       |                            |  |
| FSA           | L1/L2/L3       | Screw-type | Fork-type | $4 \times 1.5 \text{ mm}^2$ to $4 \text{ mm}^2$                       | 1.75 Nm                    |  |
|               | PE             |            | Ring-type | (AWG 14 to AWG 12)                                                    | (15.5 lbf.in)              |  |
| FSB           | L1/L2/L3       |            | Fork-type | $4 \times 2.5 \text{ mm}^2$ to $4 \text{ mm}^2$                       |                            |  |
|               | PE             |            | Ring-type | (AWG 13 to AWG 12)                                                    |                            |  |
| Wall-mo       | unted converte | r          |           |                                                                       |                            |  |
| FSA           | L1/L2/L3/PE    | Screw-type | Pin-type  | $4 \times 1.5 \text{ mm}^2$ to 6 mm <sup>2</sup><br>(AWG 14 to AWG 9) | Black terminals:<br>1.3 Nm |  |
| FSB           |                |            |           | $4 \times 2.5 \text{ mm}^2$ to $6 \text{ mm}^2$                       | (10.5 lbf.in)              |  |
|               |                |            |           | (AWG 13 to AWG 9)                                                     | Green terminals:           |  |
| FSC           | ]              |            |           | $4 \times 4 \text{ mm}^2$ to $6 \text{ mm}^2$                         | 1.7 Nm<br>(15.0 lbf.in)    |  |
|               |                |            |           | (AWG 11 to AWG 9)                                                     | (                          |  |

For more information on cable cross-sections at line supply daisy chain application, see the following chapter:

Connecting to the line supply using daisy chain (Page 76)

# Motor power (U/V/W/PE), EM brake (EM+/EM-, EM1/EM2), and motor temperature sensor (T+/T-) terminals

#### **Connector variant**

| Frame size   | Terminal         | Cross-section for stranded conductor                                    |
|--------------|------------------|-------------------------------------------------------------------------|
| Wall-mounted | l converter      |                                                                         |
| FSA U/V/W/PE |                  | $4 \times 1.5 \text{ mm}^2$ to $4 \text{ mm}^2$ (AWG 14 to AWG 12)      |
|              | EM+/EM-, EM1/EM2 | $2 \times 0.75$ mm <sup>2</sup> to 4 mm <sup>2</sup> (AWG 18 to AWG 12) |
|              | T+/T-            | 2 × 0.75 mm <sup>2</sup> to 1.5 mm <sup>2</sup> (AWG 18 to AWG 16)      |

# Wiring

# 4.8 Cables and connectors

| Frame size | Terminal         | Cross-section for stranded conductor                                   |
|------------|------------------|------------------------------------------------------------------------|
| FSB        | U/V/W/PE         | 4 × 2.5 mm <sup>2</sup> to 4 mm <sup>2</sup> (AWG 13 to AWG 12)        |
|            | EM+/EM-          | $2 \times 0.75 \text{ mm}^2$ to 4 mm <sup>2</sup> (AWG 18 to AWG 12)   |
|            | T+/T-            | $2 \times 0.75 \text{ mm}^2$ to 1.5 mm <sup>2</sup> (AWG 18 to AWG 16) |
| FSC        | U/V/W/PE         | 4 × 4 mm <sup>2</sup> (AWG 12)                                         |
|            | EM+/EM-, EM1/EM2 | $2 \times 0.75 \text{ mm}^2$ to 4 mm <sup>2</sup> (AWG 18 to AWG 12)   |
|            | T+/T-            | 2 × 0.75 mm <sup>2</sup> to 1.5 mm <sup>2</sup> (AWG 18 to AWG 16)     |

# **Glanded variant**

| Frame size  | Terminal     |            | Cable lug                                                                         | Cross-section for stran-<br>ded conductor                             | Screw tighten-<br>ing torque |
|-------------|--------------|------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------|
| Wall-mounte | ed converter |            |                                                                                   |                                                                       |                              |
| FSA         | U/V/W        | Screw-type | Fork-type                                                                         | $4 \times 2.5 \text{ mm}^2$ to $4 \text{ mm}^2$<br>(AWG 13 to AWG 12) | 1.0 Nm<br>(8.9 lbf.in)       |
|             | PE           |            | Ring-type                                                                         |                                                                       | 2.2 Nm<br>(19.5 lbf.in)      |
| FSB         | U/V/W        | Screw-type | e Fork-type $4 \times 2.5 \text{ mm}^2$ to $4 \text{ mm}^2$<br>(AWG 13 to AWG 12) |                                                                       | 1.0 Nm<br>(8.9 lbf.in)       |
|             | PE           |            | Ring-type                                                                         |                                                                       | 2.2 Nm<br>(19.5 lbf.in)      |
| FSC         | U/V/W        | Screw-type | Fork-type                                                                         | 4 × 4 mm <sup>2</sup><br>(AWG 12)                                     | 1.0 Nm<br>(8.9 lbf.in)       |
|             | PE           |            | Ring-type                                                                         |                                                                       | 2.2 Nm<br>(19.5 lbf.in)      |

| Frame size  | Terminal            |             | Terminal |                                                                               | Cable lug | Cross-section for stran-<br>ded conductor | Crimping<br>length |
|-------------|---------------------|-------------|----------|-------------------------------------------------------------------------------|-----------|-------------------------------------------|--------------------|
| Wall-mounte | d converter         |             |          |                                                                               |           |                                           |                    |
| FSA/FSB/FSC | EM+/EM-,<br>EM1/EM2 | Spring-type | Pin-type | $2 \times 0.75 \text{ mm}^2 \text{ to } 4 \text{ mm}^2$<br>(AWG 18 to AWG 12) | 12 mm     |                                           |                    |
|             | T+/T-               |             |          | 2 × 0.75 mm <sup>2</sup> to 1.5 mm <sup>2</sup><br>(AWG 18 to AWG 16)         | 10 mm     |                                           |                    |

# 24 V DC power supply terminals (2L+/2M/1L+/1M)


#### **Connector variant**

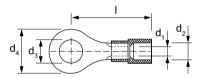
| Frame size  | Cross-section for stranded conductor                               |
|-------------|--------------------------------------------------------------------|
| FSA/FSB/FSC | 4 × 0.75 mm <sup>2</sup> to 2.5 mm <sup>2</sup> (AWG 19 to AWG 13) |

# **Glanded variant**

| Frame size  | Terminal<br>type | Cable lug | Cross-section for stranded conductor                                   | Crimping<br>length |
|-------------|------------------|-----------|------------------------------------------------------------------------|--------------------|
| FSA/FSB/FSC | Spring-type      | Pin type  | $4 \times 0.75 \text{ mm}^2$ to 2.5 mm <sup>2</sup> (AWG 19 to AWG 13) | 10 mm              |

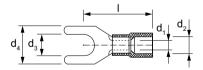
For more information on cable cross-sections at 24 V power supply daisy chain application, see the following chapter:




# Digital input and output terminals

| Frame size  | Terminal<br>type | Cable lug | Cross-section for stranded conductor                                       | Crimping<br>length |
|-------------|------------------|-----------|----------------------------------------------------------------------------|--------------------|
| FSA/FSB/FSC | Spring-type      | Pin type  | $5 \times 0.25 \text{ mm}^2$ to 0.34 mm <sup>2</sup><br>(AWG 24 to AWG 22) | 8 mm               |

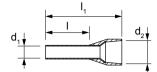
## Cable lugs


Use cable lugs with insulated end sleeves for cable connections. The maximum dimensions of the cable lugs are listed in the table below. These cable lugs are not to exceed these dimensions; otherwise, the mechanical fastening and adherence to the voltage distances are not guaranteed.

#### Ring type cable lug



| Screw/bolt | Cable cross-section (mm <sup>2</sup> ) | d <sub>1</sub> (mm) | d <sub>2</sub> (mm) | d₃(mm) | d <sub>4</sub> (mm) | l (mm) |
|------------|----------------------------------------|---------------------|---------------------|--------|---------------------|--------|
| M4         | 0.5 to 1.5                             | 1.7                 | 4.1                 | 4.3    | 8                   | 17.0   |
| M4         | 1.5 to 2.5                             | 2.3                 | 4.5                 | 4.3    | 8.5                 | 17.8   |
| M4         | 4 to 6                                 | 3.4                 | 6.5                 | 4.3    | 9.5                 | 20.8   |


#### Fork type cable lug



| Screw/bolt | Cable cross-section (mm <sup>2</sup> ) | d <sub>1</sub> (mm) | d <sub>2</sub> (mm) | d₃ (mm) | d <sub>4</sub> (mm) | l (mm) |
|------------|----------------------------------------|---------------------|---------------------|---------|---------------------|--------|
| M3.5       | 1.5 to 2.5                             | 2.3                 | 4.5                 | 3.7     | 5.8                 | 16.3   |
| M3.5       | 4 to 6                                 | 3.4                 | 6.5                 | 3.7     | 7.2                 | 20     |
| M4         | 4 to 6                                 | 3.4                 | 6.5                 | 4.3     | 8.5                 | 20     |

4.9 Connecting the line supply

## Pin type cable lug



| Cable cross-section (mm <sup>2</sup> ) | d <sub>1</sub> (mm) | d <sub>2</sub> (mm) | l <sub>1</sub> (mm) | Crimping length I (mm) |
|----------------------------------------|---------------------|---------------------|---------------------|------------------------|
| 0.75                                   | 1.3                 | 2.8                 | 16                  | 10                     |
|                                        |                     |                     | 18                  | 12                     |
| 1                                      | 1.5                 | 3                   | 16.5                | 10                     |
|                                        |                     |                     | 18.5                | 12                     |
| 1.5                                    | 1.8                 | 3.4                 | 18.5                | 12                     |
| 2.5                                    | 2.3                 | 4.2                 | 17                  | 10                     |
|                                        |                     |                     | 19                  | 12                     |
| 4                                      | 2.9                 | 4.7                 | 19.5                | 12                     |

# 4.9 Connecting the line supply

# 4.9.1 Interface description - X1/X3

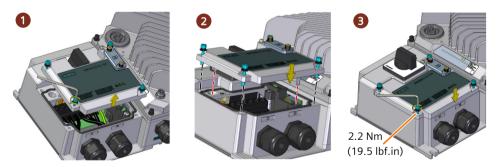
# **Connector variant**

One of the three types of connectors (Q4/2, QUICKON, or MQ15) is provided depending on the variant that has been ordered. The QUICKON and MQ15 connectors are for FSA and FSB only. For the line connection in a daisy chain, only Q4/2 connectors are provided in pair when delivered.

Q4/2 connectors (daisy-chain connections supported)

| X1 - line supply (IN), 4-pin, male | X3 - line supply (OUT), 4-pin, fe-<br>male | Signal | Description      |
|------------------------------------|--------------------------------------------|--------|------------------|
|                                    |                                            | L1     | Line phase L1    |
|                                    |                                            | L2     | Line phase L2    |
|                                    |                                            | L3     | Line phase L3    |
|                                    |                                            | PE     | Protective earth |

| X1 - line supply (IN), 4-pir | ı, male | Signal | Description      |
|------------------------------|---------|--------|------------------|
| QUICKON                      | MQ15    | L1     | Line phase L1    |
| L2                           | L2      | L2     | Line phase L2    |
|                              |         | L3     | Line phase L3    |
|                              |         |        | Protective earth |


# QUICKON/MQ15 connector\* (daisy-chain connections not supported)

\* Not suitable for UL applications; not available for FSC

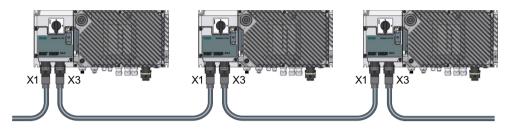
# **Glanded variant**

| X1/X3 - line supply terminals (scre | Signal                                      | Description |                   |
|-------------------------------------|---------------------------------------------|-------------|-------------------|
| Motor-mounted converter             | Wall-mounted converter                      | L1          | Line phase L1     |
|                                     | PE L1 L2 L3 IN                              | L2          | Line phase L2     |
|                                     |                                             | L3          | Line phase L3     |
|                                     | <b>* * * * * * * * </b> * <b>*</b>          | PE          | Protective earth  |
|                                     | OUT [L3]L2]L1 [PE]                          | Cable gland | l size: M25 * 1.5 |
| Screw tightening torque: 1.75 Nm/   | Screw tightening torque:                    |             |                   |
| 15.5 lbf.in                         | 1.7 Nm/15.0 lbf.in (for terminals in green) |             |                   |
|                                     | 1.3 Nm/10.5 lbf.in (for terminals in black) |             |                   |

For wall-mounted converter, you must remove the local/remote control (LRC) panel or the blanking cover to get access to the line supply terminals.



# **Further information**


Cables and connectors (Page 69)

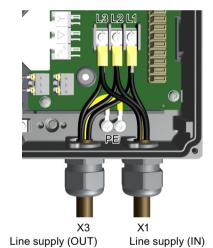
4.9 Connecting the line supply

# 4.9.2 Connecting to the line supply using daisy chain

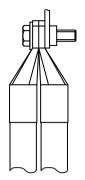
The SINAMICS G115D system has been designed to allow a converter to provide the mains power for a number of converters in a daisy chain.

The figure below exemplifies the methodology for daisy-chaining multiple converters:




# Wiring the line supply terminals for the glanded variant

The figures below show examples of wiring the line supply terminals for the daisy-chain connection for a glanded variant of converter:


X1 X3 Line supply (IN)

Wall-mounted converter

Motor-mounted converter



For the daisy-chain line supply connection of the motor-mounted converters, make sure that you connect two cable lugs per terminal as recommended below to ensure reliable electrical connectivity:



# Maximum current limit for daisy-chain connection

The maximum permissible number of daisy-chained converters depends on the maximum current limit for daisy-chain connection. The table below gives the maximum current limits dependent upon the cable cross-sections and surrounding air temperature:

| Converter     | IEC-compliant cable              | UL-compliant cable   |                      |  |
|---------------|----------------------------------|----------------------|----------------------|--|
|               |                                  | Connector variant    | Glanded variant      |  |
| Motor-mounted | 23 A @ 4 mm <sup>2</sup> , 40 °C | 16 A @ 12 AWG, 40 °C | 16 A @ 12 AWG, 40 °C |  |
| converter     | 16 A @ 4 mm², 55 °C              | 11 A @ 12 AWG, 55 °C | 13 A @ 12 AWG, 45 °C |  |
|               |                                  |                      | 12 A @ 12 AWG, 48 °C |  |
| Wall-mounted  | 25 A @ 6 mm <sup>2</sup> , 40 °C | 24 A @ 10 AWG, 40 °C | 16 A @ 9 AWG, 40 °C  |  |
| converter     | 21 A @ 6 mm², 55 °C              | 16 A @ 10 AWG, 55 °C | 13 A @ 9 AWG, 45 °C  |  |
|               |                                  |                      | 12 A @ 9 AWG, 48 °C  |  |

# Further information on protective devices

For both connector and glanded variants, the input for the daisy chained converters can be protected by group fusing.

For more information about the permissible types of the group fusing, see the SINAMICS G115D Product Information of Protective Devices:

Rotective devices (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)

# **Further information**

If you don't use daisy chain connection, cover the unused connectors with the optional connector cover kit to maintain the IP rating of the system.

Connector cover kit (Page 36)

4.10 Connecting the motor

# 4.10 Connecting the motor



# M WARNING

#### Electric shock by live parts in the motor terminal box

Hazardous voltage can be present on the pins for temperature sensor and motor holding brake. Touching live parts on the motor cable and in the motor terminal box can lead to death due electrical shock.

- Keep the motor terminal box closed whenever the mains is applied to the converter.
- Insulate the cables that are not used.
- Use appropriate insulation on the cables.

#### NOTICE

#### Damage of the converter by disconnecting the motor cable during operation

The disconnection of the motor cable by a switch or contactor during operation may damage the converter.

• Disconnect converter and motor during operation only if it is necessary in terms of personal security or machine protection.



# M WARNING

#### Electric shock due to rotating permanent magnet synchronous motor

As soon as a permanent magnet synchronous motor rotates, the motor terminals may be subject to dangerous voltage. Touching live motor terminals can result in death or serious injury.

- Ensure that the motor is at a standstill before working on the motor terminals or the converter.
- Block the motor mechanically, e.g. using a holding brake.
- Disconnect the motor cable between the converter and the motor when performing electrical work on the converter.

# \Lambda warning

# Fire after short-circuit in the motor current circuit caused by rotating permanent magnet synchronous motor

In the event of a short circuit in the converter or in the motor cable, a permanent magnet synchronous motor supplies energy to the short-circuit as long as the motor is rotating. This can cause smoke and a fire, endangering people.

- Install a contactor between the motor and the converter and as close to the motor as possible.
- Use a contactor with overvoltage protection to prevent damage to the motor when separating the motor from the converter.
- Use converter signal r0863.1 and a free digital output of the converter to open the contactor between motor and converter in the event of a fault.

# 4.10.1 Interface description - X2

The motor power interface located on the Wiring Module is available only for the G115D wallmounted converter. For a G115D converter with SIMOGEAR geared motor, the wiring between the converter and the motor is completed when delivered.

# **Connector variant**

| X2 - motor power, 8-pin,<br>female | Pin | Signal  | Description                                          |
|------------------------------------|-----|---------|------------------------------------------------------|
|                                    | 1   | U       | Phase U                                              |
|                                    | 2   | -       | Not connected                                        |
|                                    | 3   | W       | Phase W                                              |
| 69 9 8                             | 4   | EM-/EM2 | EM brake negative (180 V DC) / EM brake 2 (400 V AC) |
|                                    | 5   | T+      | Motor temperature sensor positive                    |
|                                    | 6   | EM+/EM1 | EM brake positive (180 V DC) / EM brake 1 (400 V AC) |
|                                    | 7   | V       | Phase V                                              |
|                                    | 8   | T-      | Motor temperature sensor negative                    |
|                                    | 9   | PE      | Protective earth                                     |

#### Q8/0 connector

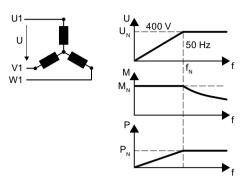
4.10 Connecting the motor

# **Glanded variant**

| X2 - motor power terminals | Signal                      | Description                       |  |  |
|----------------------------|-----------------------------|-----------------------------------|--|--|
| FSA                        | U                           | Phase U                           |  |  |
|                            | V                           | Phase V                           |  |  |
|                            | W                           | Phase W                           |  |  |
|                            | EM+                         | EM brake positive (180 V DC)      |  |  |
|                            | EM-                         | EM brake negative (180 V DC)      |  |  |
|                            | EM1                         | EM brake 1 (400 V AC)             |  |  |
|                            | EM2                         | EM brake 2 (400 V AC)             |  |  |
|                            | T+                          | Motor temperature sensor positive |  |  |
| FSB                        | T-                          | Motor temperature sensor negative |  |  |
| AC DC                      |                             | Protective earth                  |  |  |
| T+ T-                      | Screw tightening torque:    |                                   |  |  |
|                            | • U/V/W: 1.0 Nm/8.9 lbf.in; |                                   |  |  |
|                            | • (=): 2.2 Nm/19.5 lbf.in   |                                   |  |  |
|                            | Cable gland size: M25 * 1.5 |                                   |  |  |
| FSC                        |                             |                                   |  |  |
|                            |                             |                                   |  |  |

# **Further information**

Glanded installation kit (Page 36)

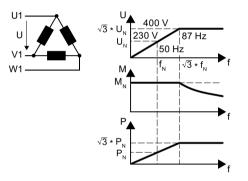

# 4.10.2 Connecting the motor in a star or delta connection

# 4.10.2.1 Overview

Standard asynchronous motors up to a rated power of approximately 3 kW are normally connected in a star/delta connection (Y/ $\Delta$ ) at 400 V/230 V. For a 400 V line supply, you can connect the motor to the converter either in a star or in a delta connection.

# **Function description**

#### Operating the motor in a star connection




In a star connection, the motor can provide its rated torque  $M_{\text{N}}$  in the range 0 ... rated frequency  $f_{\text{N}}.$ 

Rated voltage  $U_N = 400$  V is available at a rated frequency  $f_N = 50$  Hz.

The motor goes into field weakening above the rated frequency. In field weakening, the available motor torque decreases linearly with 1/f. In field weakening, the available power remains constant.

## Operating the motor in a delta connection with 87 Hz characteristic

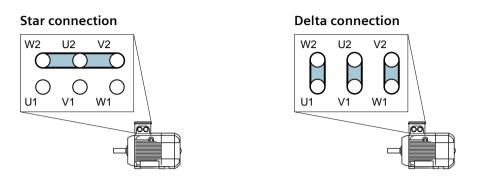


In a delta connection, the motor is operated with a voltage and frequency above its rated values. As a consequence, the motor power is increased by a factor  $\sqrt{3} \approx 1.73$ .

In the range  $f = 0 \dots 87$  Hz, the motor can output its rated torque  $M_N$ .

The maximum voltage U = 400 V is available at a frequency of f =  $\sqrt{3} \times 50$  Hz  $\approx 87$  Hz.

The motor only goes into field weakening above 87 Hz.


The higher motor power when operated with an 87 Hz characteristic has the following disadvantages:

- The converter must supply approximately 1.73x current. Select a converter based on its rated current and not its rated power.
- The motor temperature increases more significantly than when operated with f  $\leq$  50 Hz.
- The motor must have windings that are approved for a voltage > rated voltage U<sub>N</sub>.
- As the fan impeller rotates faster, the motor has a higher noise level than operation with f  $\leq$  50 Hz.

4.11 Connecting the 24 V power supply

# 4.10.2.2 Configuring the star/delta connection of the wall-mounted converter

The star/delta connection is implemented inside the terminal box of the motor. You can configure the connection according to the circuit diagram of the motor.



# 4.11 Connecting the 24 V power supply



# 

#### Electric shock due to unsuitable power supply

When equipment is connected to an unsuitable power supply, exposed components may carry a hazardous voltage that might result in serious injury or death.

• Only use power supplies that provide SELV (Safety Extra Low Voltage) or PELV- (Protective Extra Low Voltage) output voltages (maximum 60 V DC briefly) for all connections and terminals of the electronics modules.

#### NOTICE

#### 24 V power supply connection not available on AS-I variant

The AS-I variant is supplied with DC 24 V directly from the AS-I bus connection and therefore does not have DC24V connections. All other variants have the DC24V power supply connections.

# 4.11.1 Interface description - X01/X02

#### **Connector variant**

One of the two types of connectors (7/8" and M12 L-coding) is provided depending on the variant that has been ordered.

#### 4.11 Connecting the 24 V power supply

#### 7/8" connector

| X01 - 24 V power supply<br>(IN), 5-pin, male | X02 - 24 V power supply<br>(OUT), 5-pin, female | Pin | Signal | Description     |
|----------------------------------------------|-------------------------------------------------|-----|--------|-----------------|
|                                              |                                                 | 1   | 2M     | Switched 0 V    |
|                                              |                                                 | 2   | 1M     | Unswitched 0 V  |
| $ ^{(2)}3^{(4)}$                             | 432                                             | 3   | FE     | Not connected   |
|                                              |                                                 | 4   | 1L+    | Unswitched 24 V |
|                                              |                                                 | 5   | 2L+    | Switched 24 V   |

#### M12 L-coding connector

| X01 - 24 V power supply<br>(IN), 5-pin, male | X02 - 24 V power supply<br>(OUT), 5-pin, female | Pin | Signal | Description     |
|----------------------------------------------|-------------------------------------------------|-----|--------|-----------------|
| Ē                                            | Ē                                               | 1   | 1L+    | Unswitched 24 V |
|                                              |                                                 | 2   | 2M     | Switched 0 V    |
|                                              |                                                 | 3   | 1M     | Unswitched 0 V  |
|                                              |                                                 | 4   | 2L+    | Switched 24 V   |
| 2 3                                          | 3 2                                             | -   | FE     | Not connected   |

# **Glanded variant**

| X01/X02 - 24 V power supply term | Signal                 | Description |                   |
|----------------------------------|------------------------|-------------|-------------------|
| Motor-mounted converter          | Wall-mounted converter | 2L+         | Switched 24 V     |
| 2L+ 2M 1L+ 1M OUT                | 2L+ 2M 1L+ 1M OUT      | 2M          | Switched 0 V      |
| Switched Un witched              | Switched Unswitched    | 1L+         | Unswitched 24 V   |
| 2L+ 2M 1L+ 1M                    |                        | 1M          | Unswitched 0 V    |
|                                  | 2L+ 2M 1L+ 1M IN       | Cable glan  | d size: M20 * 1.5 |

# Switched/unswitched 24 V power supply

The unswitched (also known as "non-switched") 24 V power supply (1L+) is required for the drive to function.

- Use a power supply with PELV (Protective Extra Low Voltage).
- The 0 V of the power supply must be connected with low resistance to the PE of the system.

The switched 24 V (2L+) supplies the two bidirectional digital inputs/outputs DIO 24 and DIO 25. Switching off the 24 V power supply voltage brings all of the actuators connected to the digital outputs into the no-voltage state.

If you don't need the switching of 2L+ power supply, you can connect the conductors 2M (switched 0 V) to 1M (unswitched 0 V) and 2L+ (switched 24 V) to 1L+ (unswitched 24 V) at interface X01, so that both the switched and the unswitched 24 V come from the same supply.

4.11 Connecting the 24 V power supply

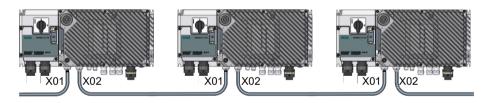
# 24 V DC power supply unit

The integrated 24 V DC power supply unit (PSU) is optionally available to generate 24 V DC power supply from the line supply. It supplies 24 V DC power to one converter only and does not support daisy-chain connections.

For converters integrated with both the repair switch and the 24 V PSU, the 24 V DC power supply to the converter is maintained when you switch off the 400 V AC supply via the repair switch.

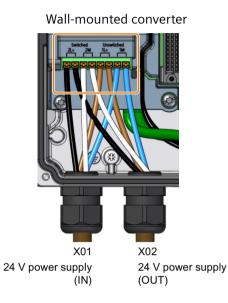
## **Requirements for applications in USA and Canada**

Use a NEC Class 2 or a limited voltage/limited current power supply for variants with 7/8" connector; use a limited voltage power supply for all other variants.


# **Further information**

Cables and connectors (Page 69) Glanded installation kit (Page 36)

#### 4.11.2 Connecting to the 24 V power supply using daisy chain


The SINAMICS G115D system has been designed to allow a converter to provide the 24 V DC power for a number of converters in a daisy chain.

The figure below exemplifies the methodology for daisy-chaining multiple converters:



# Wiring the 24 V power supply terminals for the glanded variant

The figure shows an example of wiring the 24 V power supply terminals for the daisy-chain connection for the glanded variant of the converter:





# Maximum current limit for daisy-chain connection

The maximum permissible number of daisy-chained converters depends on the maximum current limit for daisy-chain connection. The table below gives the maximum current limits dependent upon the cable cross-sections and surrounding air temperature:

| IEC-compliant cable             |                      | UL-compliant cable              |                           |  |
|---------------------------------|----------------------|---------------------------------|---------------------------|--|
| Connector variant <sup>1)</sup> | Glanded variant      | Connector variant <sup>1)</sup> | Glanded variant           |  |
| 12 A + 12 A @ 2.5 mm            | <sup>2</sup> , 40 °C | 12 A + 12 A @ 13 AWG, 40 °C     | 8 A + 8 A @ 13 AWG, 40 °C |  |
| 12 A + 12 A @ 2.5 mm            | <sup>2</sup> , 55 °C | 8 A + 8 A @ 13 AWG, 55 °C       | 8 A + 8 A @ 13 AWG, 45 °C |  |
|                                 |                      |                                 | 6 A + 6 A @ 13 AWG, 48 °C |  |

<sup>1)</sup> The values in the table above are valid when connecting with M12 L-coding connectors. If 7/8" connectors are used, the maximum current limit is 8 A + 8 A at 40 °C and 6 A + 6 A at 55 °C.

# **Further information**

If you don't use daisy chain connection, cover the unused connectors with the optional connector cover kit to maintain the IP rating of the system.



Connector cover kit (Page 36)

# 4.12 Connecting the digital inputs and outputs

# 4.12.1 Interface description - X07/X08/X05

The G115D converter has four digital inputs (DI 0 to DI 3) and two bidirectional digital inputs/ outputs (DIO 24 and DIO 25). Digital inputs DI 0 and DI 1 can be used to connect an HTL encoder (track A/B). Digital inputs DI 2 and DI 3 can be used for the safety functions. The bidirectional DI/ DO can be parameterized as digital inputs or digital outputs with parameter p0728.

## **Connector variant**

#### M12 A-coding connector, 5-pin, female

| Digital inputs (X07, X08) and bidirectional digital inputs/outputs (X05) |     |        |                                       |  |  |
|--------------------------------------------------------------------------|-----|--------|---------------------------------------|--|--|
| X07                                                                      | Pin | Signal | Description                           |  |  |
| 52                                                                       | 1   | 1L+    | Unswitched 24 V                       |  |  |
|                                                                          | 2   | DI1    | Digital input 1                       |  |  |
|                                                                          | 3   | 1M     | Unswitched 0 V                        |  |  |
|                                                                          | 4   | DI0    | Digital input 0                       |  |  |
|                                                                          | 5   | FE     | Functional earth                      |  |  |
| X08                                                                      | Pin | Signal | Description                           |  |  |
| 02                                                                       | 1   | 1L+    | Unswitched 24 V                       |  |  |
|                                                                          | 2   | DI3    | Digital input 3                       |  |  |
|                                                                          | 3   | 1M     | Unswitched 0 V                        |  |  |
|                                                                          | 4   | DI2    | Digital input 2                       |  |  |
|                                                                          | 5   | FE     | Functional earth                      |  |  |
| X05                                                                      | Pin | Signal | Description                           |  |  |
| 50                                                                       | 1   | 2L+    | Switched 24 V                         |  |  |
|                                                                          | 2   | DIO25  | Bidirectional digital output/input 25 |  |  |
|                                                                          | 3   | 2M     | Switched 0 V                          |  |  |
|                                                                          | 4   | DIO24  | Bidirectional digital output/input 24 |  |  |
|                                                                          | 5   | FE     | Functional earth                      |  |  |

## **Glanded variant**

| Digital inputs (X07, X08) and bidirectional digital in-<br>puts/outputs (X05) |            | Signal     | Description                              |
|-------------------------------------------------------------------------------|------------|------------|------------------------------------------|
| Motor-mounted converter                                                       | X07        | 1L+        | Unswitched 24 V                          |
| 2274 <b>ADDD</b>                                                              |            | DIO        | Digital input 0                          |
| 2662 H                                                                        |            | DI1        | Digital input 1                          |
| X05 DIO 24/25                                                                 |            | 1M         | Unswitched 0 V                           |
| m≊≊22                                                                         |            | FE         | Functional earth                         |
| - <u>X08 DI2/DI3</u>                                                          | X08        | 1L+        | Unswitched 24 V                          |
|                                                                               |            | DI2        | Digital input 2                          |
| X07 DI0/DI1                                                                   |            | DI3        | Digital input 3                          |
|                                                                               |            | 1M         | Unswitched 0 V                           |
| Wall-mounted converter                                                        |            | FE         | Functional earth                         |
| _X07 DI0/DI1 X08 DI2/DI3 _X05 DI0 24/25_                                      | X05        | 2L+        | Switched 24 V                            |
| 1L+ DIO DI1 1M FE 1L+ DI2 DI3 1M FE 2L+ 004005 2M FE                          |            | DIO24      | Bidirectional digital output/input<br>24 |
|                                                                               |            | DIO25      | Bidirectional digital output/input<br>25 |
|                                                                               |            | 2M         | Switched 0 V                             |
|                                                                               |            | FE         | Functional earth                         |
| Cable gland size: M16 * 1.5; Tightening torqu                                 | e: 10 Nm/8 | 8.5 lbf.in |                                          |

#### Note

# Malfunction caused by incorrect switching states as the result of diagnostic flows in off state (logical state "0")

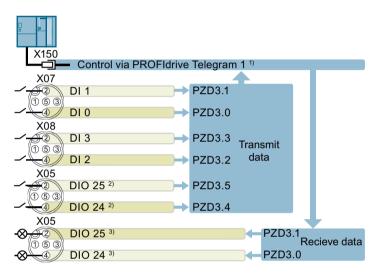
In contrast to mechanical switching contacts, e.g. emergency stop switches, diagnostic flows can also flow with semiconductor switches in the off state. If interconnection with digital inputs is faulty, the diagnostic flows can lead to incorrect switching states and thus to a malfunction of the drive.

- Observe the conditions for digital inputs and digital outputs specified in the relevant manufacturers documentation.
- Check the conditions of the digital inputs and digital outputs in regard to the flows in off state. If applicable, connect the digital inputs with suitably dimensioned, external resistors to protect against the reference potential of the digital inputs.

#### **Further information**



# 4.12.2 Factory interface setting

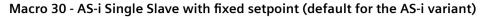

To ensure that the factory setting of the interfaces can be used, you must wire your drive as shown in the following examples.

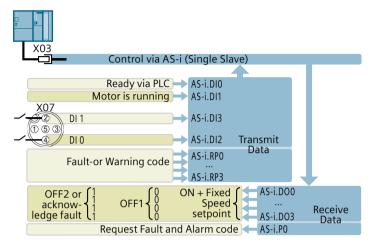
See below for default macros for different communication variants of the G115D:

| G115D communication variant | Default macro |
|-----------------------------|---------------|
| PROFINET                    | Macro 67      |
| AS-i                        | Macro 30      |
| I/O                         | Macro 65      |

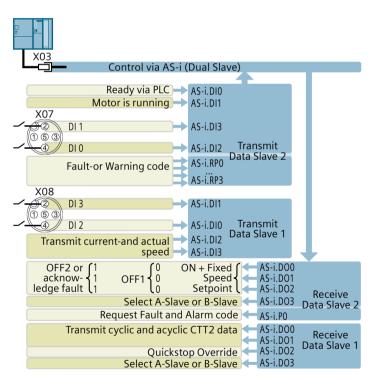
#### **Macros for SINAMICS G115D PROFINET variant**

| Macro 67 - 4-DI decentral conveyor wit | n fieldbus (e | default for the | <b>PROFINET</b> varian | ıt) |
|----------------------------------------|---------------|-----------------|------------------------|-----|
|----------------------------------------|---------------|-----------------|------------------------|-----|

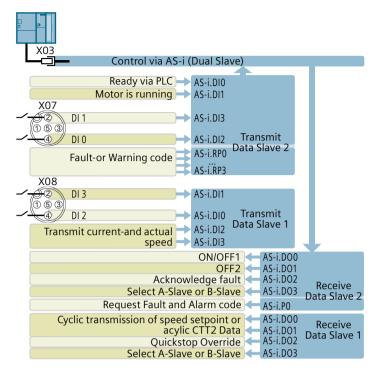


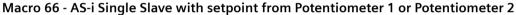


<sup>1)</sup> Telegram 1 is extended to provide extra PZD bits (PZD3.x) for signal interconnections in the converter. For more information about the extended telegram 1, refer to Section "Drive control via PROFINET (Page 148)".

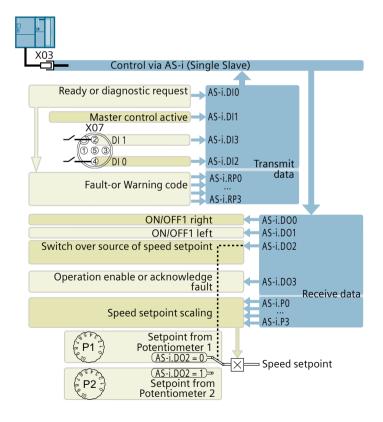
<sup>2)</sup> Parameterized as digital inputs via p0728.


<sup>3)</sup> Parameterized as digital outputs via p0728.

## Macros for SINAMICS G115D AS-i variant

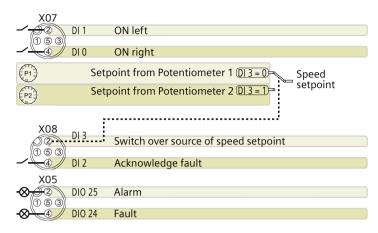


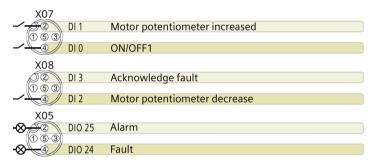


Macro 31 - AS-i Dual Slave with fixed setpoint



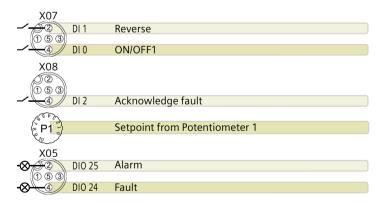
Macro 34 - AS-i Dual Slave with fieldbus setpoint



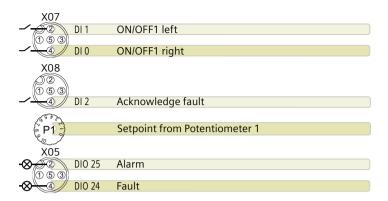


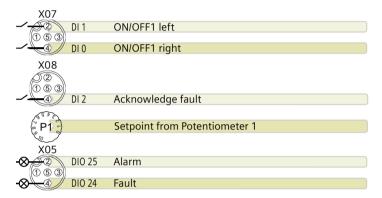

## Macros for SINAMICS G115D I/O variant


Macro 65 - Conveyor with setpoint from Potentiometer 1 or Potentiometer 2 (default for the I/O variant)

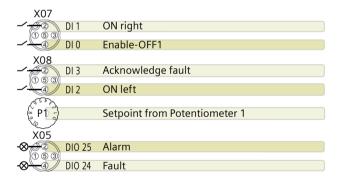



Macro 9 - Motorized potentiometer (MOP)









Macro 61 - Two-wire control with method 2



Macro 62 - Two-wire control with method 3



Macro 63 - Three-wire control with method 1



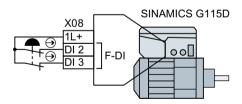
Macro 64 - Three-wire control with method 2

| X07        |        |                               |
|------------|--------|-------------------------------|
|            | DI 1   | ON                            |
| (1 5 3)    |        |                               |
|            | DI O   | Enable - OFF1                 |
| X08        |        |                               |
|            | DI 3   | Acknowledge fault             |
| (1 5 3)    |        | -                             |
|            | DI 2   | Reverse                       |
| 5500       |        |                               |
| (° P1 -    |        | Setpoint from Potentiometer 1 |
| Se I       |        |                               |
| X05        |        |                               |
| -8-02      | DIO 25 | Alarm                         |
| (1 5 3)    |        |                               |
| $-\otimes$ | DIO 24 | Fault                         |

#### **Further information**

You can adjust the default interface settings to suit your requirements.

Adapt the default settings of the inputs and outputs (Page 139)


# 4.12.3 Fail-safe digital input

To enable a safety function via the terminal strip of the converter, you need a fail-safe digital input. The digital inputs DI 2 and DI 3 can be used for the safety functions.

In the factory setting of the converter, the fail-safe digital input is not assigned to the integrated safety functions. Only when commissioning do you define as to whether, for example, you use digital inputs for the standard functions, or you create a fail-safe digital input by combining them.

#### Wiring examples

An example for wiring the fail-safe digital input corresponding to PL d according to EN 13849-1 and SIL 2 according to IEC 61508 is given below:



#### **Further information**

Safe Torque Off (STO) safety function (Page 238)

Additional configurations of the safety functions are described in the "Safety Integrated" Function Manual.

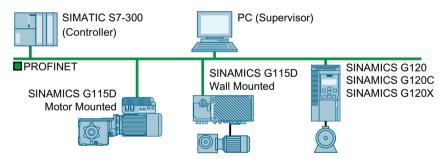
Overview of the manuals (Page 592)

# 4.13 Connecting to PROFINET and Ethernet

# 4.13.1 Interface description - X150 P1/P2

## M12 D-coding connector

| X150 P1/P2 - PROFINET, 4-pin, female |     |        |                 |
|--------------------------------------|-----|--------|-----------------|
| M12                                  | Pin | Signal | Description     |
|                                      | 1   | ТХР    | Transmit data + |
|                                      | 2   | RXP    | Receive data +  |
|                                      | 3   | TXN    | Transmit data - |
|                                      | 4   | RXN    | Receive data -  |

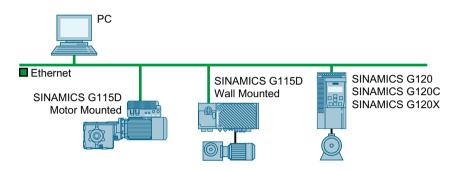

# **Further information**

Cables and connectors (Page 69)

# 4.13.2 Communication via PROFINET IO and Ethernet

You can either integrate the converter in a PROFINET network or communicate with the converter via Ethernet.

# The converter in PROFINET IO operation




The converter supports the following functions:

- RT
- IRT: The converter forwards the clock synchronism, but does not support clock synchronism
- MRP: Media redundancy, impulsed with 200 ms. Requirement: Ring topology
- MRPD: Media redundancy, bumpless. Requirement: IRT and the ring topology created in the control
- Diagnostic alarms in accordance with the error classes specified in the PROFIdrive profile

- Device replacement without removable data storage medium: the replaced converter obtains the device name from the IO controller not from its memory card or programming device
- Shared Device for converters that support PROFIsafe

#### The converter as Ethernet node



## **Further information on PROFINET**

Further information on PROFINET can be found on the Internet:

- PROFINET system description (<u>https://support.industry.siemens.com/cs/ww/en/view/</u>
   <u>19292127</u>)

Further information on the operation as Ethernet nodes can be found in the Function Manual "Fieldbuses".

Overview of the manuals (Page 592)

# 4.13.3 Protocols used

The converter supports the protocols listed in the following tables. The address parameters, the relevant communication layer as well as the communication role and the communication direction are specified for each protocol.

You require this information to set the appropriate safety measures to protect the automation system, e.g. in the firewall.

As the security measures are limited to Ethernet and PROFINET networks, no PROFIBUS protocols are listed in the table.

| Protocol                                             | Port<br>number    | Layer<br>(2) Link layer<br>(4) Transport layer                             | Function/description                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------|-------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DCP:<br>Discovery and<br>configuration<br>protocol   | Not rele-<br>vant | (2) Ethernet II and<br>IEEE 802.1Q and<br>Ethertype 0x8892 (PRO-<br>FINET) | Accessible stations, PROFINET Discovery and configuration<br>DCP is used by PROFINET to determine PROFINET devices and to make<br>basic settings.<br>DCP uses the special multicast MAC address:<br>xx-xx-xx-01-0E-CF,<br>xx-xx-xx = Organizationally Unique Identifier                                                                       |
| LLDP:<br>Link Layer Dis-<br>covery Protocol          | Not rele-<br>vant | (2) Ethernet II and<br>IEEE 802.1Q and<br>Ethertype 0x88CC (PRO-<br>FINET) | PROFINET Link Layer Discovery protocolLLDP is used by PROFINET to determine and manage neighborhoodrelationships between PROFINET devices.LLDP uses the special multicast MAC address:01-80-C2-00-00-0E                                                                                                                                       |
| MRP:<br>Media Redun-<br>dancy Protocol               | Not rele-<br>vant | (2) Ethernet II and<br>IEEE 802.1Q and<br>Ethertype 0x88E3 (PRO-<br>FINET) | PROFINET medium redundancy<br>MRP enables the control of redundant routes through a ring topology.<br>MRP uses the special multicast MAC address:<br>xx-xx-o1-15-4E,<br>xx-xx-xx = Organizationally Unique Identifier                                                                                                                         |
| PTCP<br>Precision Trans-<br>parent Clock<br>Protocol | Not rele-<br>vant | (2) Ethernet II and<br>IEEE 802.1Q and<br>Ethertype 0x8892 (PRO-<br>FINET) | <b>PROFINET send clock and time synchronization, based on IEEE 1588</b><br>PTC is used to implement send clock synchronization and time syn-<br>chronization between RJ45 ports, which are required for IRT operation.<br>PTCP uses the special multicast MAC address:<br>xx-xx-vx-01-0E-CF,<br>xx-xx-xx = Organizationally Unique Identifier |
| PROFINET IO da-<br>ta                                | Not rele-<br>vant | (2) Ethernet II and<br>IEEE 802.1Q and<br>Ethertype 0x8892 (PRO-<br>FINET) | <b>PROFINET Cyclic IO data transfer</b><br>The PROFINET IO telegrams are used to transfer IO data cyclically be-<br>tween the PROFINET IO controller and IO devices via Ethernet.                                                                                                                                                             |
| PROFINET Con-<br>text Manager                        | 34964             | (4) UDP                                                                    | <b>PROFINET connection less RPC</b><br>The PROFINET context manager provides an endpoint mapper in order<br>to establish an application relationship (PROFINET AR).                                                                                                                                                                           |

Table 4-1 PROFINET protocols

Table 4-2 EtherNet/IP protocols

| Protocol                | Port<br>number | Layer<br>(2) Link layer<br>(4) Transport layer | Function/description                                                                                                       |
|-------------------------|----------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Implicit mes-<br>saging | 2222           | (4) UDP                                        | Used for exchanging I/O data.<br>This is inactive when delivered. Is activated when selecting EtherNet/IP.                 |
| Explicit messag-<br>ing | 44818          | (4) TCP<br>(4) UDP                             | Used for parameter access (writing, reading).<br>This is inactive when delivered. Is activated when selecting EtherNet/IP. |

| Protocol                    | Port<br>number | Layer               | Function/description                                                                                                                    |
|-----------------------------|----------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                             |                | (2) Link layer      |                                                                                                                                         |
|                             |                | (4) Transport layer |                                                                                                                                         |
| ISO on TCP (ac-             | 102            | (4) TCP             | ISO-on-TCP protocol                                                                                                                     |
| cording to RFC 1006)        |                |                     | ISO on TCP (according to RFC 1006) is used for the message-oriented data exchange to a remote CPU, WinAC or devices of other suppliers. |
|                             |                |                     | Communication with ES, HMI, etc. is activated in the factory setting, and is always required.                                           |
| SNMP                        | 161            | (4) UDP             | Simple network management protocol                                                                                                      |
| Simple Net-<br>work Manage- |                |                     | SNMP enables network management data to be read out and set (SNMP managed objects) by the SNMP manager.                                 |
| ment Protocol               |                |                     | It is activated in the factory setting, and is always required                                                                          |
| Reserved                    | 49152          | (4) TCP             | Dynamic port area that is used for the active connection endpoint if the                                                                |
|                             | 65535          | (4) UDP             | application does not specify the local port.                                                                                            |

| Table 4-3 | Connection-oriented | communication protocols |  |
|-----------|---------------------|-------------------------|--|
|           |                     |                         |  |

# 4.13.4 Connecting the converter to PROFINET

#### Procedure

Integrate the converter in the bus system (e.g. ring topology) of the control using PROFINET cables and PROFINET sockets X150 P1/P2.
 Cables and connectors (Page 69)

The maximum permitted cable length from the previous station and to the next one is 100 m.

2. Externally supply the converter with 24 V DC.

You have now connected the converter to the control system via PROFINET.  $\hfill\square$ 

# 4.13.5 What do you have to set for communication via PROFINET

#### Configuring PROFINET communication in the I/O controller

You require the appropriate engineering system for the IO controller to configure PROFINET communication in the IO controller.

If required, load the GSDML file of the converter into the engineering system.

Installing GSDML (Page 98)

## **Device name**

In addition to the MAC address and IP address, PROFINET also uses the device name to identify PROFINET devices (Device name). The device name must be unique across the PROFINET network.

To assign the device name, you need an engineering software, e.g. Startdrive.

The converter saves the device name in its EEPROM. If an optional memory card is inserted, the converter saves the device name additionally on the memory card.

#### **IP address**

In addition to the device name, PROFINET also uses an IP address.

You have the following options to specify the IP address of the converter:

- You specify the IP address via an engineering software tool, e.g. Startdrive.
- The IO Controller assigns an IP address to the converter.

The converter saves the IP address in its EEPROM. If an optional memory card is inserted, the converter saves the IP address additionally on the memory card.

#### Telegram

Set the same telegram in the converter as in the IO Controller. Interconnect the telegrams in the control program of the IO Controller with the signals of your choosing.

Drive control via PROFINET (Page 148)

#### **Application examples**

You can find application examples for PROFINET communication on the Internet:

Controlling the speed of a SINAMICS G110M/G120/G120C/G120D with S7-300/400F via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (<u>https://support.industry.siemens.com/cs/ww/en/view/60441457</u>)

Controlling the speed of a SINAMICS G110M/G120 (Startdrive) with S7-1500 (TO) via PROFINET or PROFIBUS, with Safety Integrated (via terminal) and HMI (<u>https://support.industry.siemens.com/cs/ww/en/view/78788716</u>)

# 4.13.6 Installing GSDML

#### Procedure

- 1. Save the GSDML to your PC.
  - With Internet access:
     GSDML (<u>https://support.industry.siemens.com/cs/ww/en/view/26641490</u>)
  - Without Internet access: Insert a memory card into the converter. Set p0804 = 12. The converter writes the GSDML as zipped file (\*.zip) into directory /SIEMENS/SINAMICS/ DATA/CFG on the memory card.
- 2. Unzip the GSDML file on your computer.
- 3. Import the GSDML into the engineering system of the controller.

You have now installed the GSDML in the engineering system of the controller.  $\hfill\square$ 

# 4.13.7 Connecting the converter to Ethernet/IP

#### Overview

To connect the converter to a control system via Ethernet, proceed as follows:

#### Procedure

- 1. Connect the converter to the control system via an Ethernet cable.
- 2. Create an object for data exchange. You have the following options:
  - Load the EDS file into your controller if you want to use the ODVA profile.
     You can find the EDS file on the Internet:
     EDS (<u>https://support.industry.siemens.com/cs/ww/en/view/78026217</u>)
  - If your controller does not accept the EDS file, or if you wish to use the SINAMICS profile, you must create a generic module in your controller:
     Creating generic I/O module (Page 178)

You have connected the converter to the control system via Ethernet/IP.  $\hfill\square$ 

# Example

You can find an example showing how to connect a converter to the control system via Ethernet/ IP on the Internet:

Application example (<u>https://support.industry.siemens.com/cs/ww/en/view/82843076</u>)

# **Further information**

You can find information on routing and shielding Ethernet cables on the Internet:

Ethernet/IP (<u>https://www.odva.org/wp-content/uploads/2020/05/</u> PUB00035R0\_Infrastructure\_Guide.pdf)

# 4.13.8 What do you need for communication via Ethernet/IP?

Check the communication settings using the following questions. If you answer "Yes" to the questions, you have correctly set the communication settings and can control the converter via the fieldbus.

- Is the converter correctly connected to the Ethernet/IP?
- Is the EDS file installed in your control system?

4.14 Connecting to AS-i

- Have the bus interface and IP address been correctly set?
- Have the signals that the converter and the control system exchange been correctly interconnected?

# 4.14 Connecting to AS-i

# 4.14.1 General information

#### **General information**

The converter operates based on the extended AS-i specification V3.0.

The signaling is made as Manchester-coded current pulses superimposed on the 28 V supply. Since the power supply is used for communications, it must be decoupled with inductors in order for the receiver to be able to decode the transmitted messages.

The yellow cable is the communication cable and provides the power to the converter and its digital inputs. The black cable is the auxiliary power supply cable and provides power to the digital outputs and the low voltage components of the converter including the fan.

The converter supports Single Slave and Dual Slave modes.

In Single Slave mode, the converter has an address in the AS-i network over which four bits are transferred. In Dual Slave mode, each converter has two AS-i addresses over each of which four bits are transferred.

In Single Slave mode, communication is realized in accordance with profile 7.F.E. In Dual Slave mode, communication is realized in accordance with profiles 7.A.5 and 7.A.E.

#### Interface settings for commissioning

To configure the communication of the converter via AS-i, the following possibilities are available for commissioning the converter:

| p0015= | Designation                                                                                  | Meaning                                                                        |
|--------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 30     | Macro 30 - AS-i Single Slave with fixed setpoint                                             | Single Slave mode with specification of a fixed fre-<br>quency via the control |
| 31     | Macro 31 - AS-i Dual Slave with fixed set-<br>point                                          | Dual Slave mode with specification of a fixed fre-<br>quency via the control   |
| 66     | Macro 66 - AS-i Single Slave with set-<br>point from Potentiometer 1 or Potenti-<br>ometer 2 | Single Slave mode with setpoint from Potentiome-<br>ter 1 or Potentiometer 2   |
| 34     | Macro 34 - AS-i Dual Slave with fieldbus setpoint                                            | Dual Slave mode with "ON/OFF1", "OFF2", speed setpoint via control             |

For details about the interface settings, refer to the following chapter:

Factory interface setting (Page 87)

# 4.14.2 Interface description - X03

#### M12 A-coding connector

| X03 - AS-i, 5-pin, male |     |        |                |
|-------------------------|-----|--------|----------------|
|                         | Pin | Signal | Description    |
| (B0 (5 01)<br>9         | 1   | AS-i + | AS-i positive  |
|                         | 2   | AUX -  | Auxiliary 0 V  |
|                         | 3   | AS-i - | AS-i negative  |
|                         | 4   | AUX +  | Auxiliary 24 V |
|                         | 5   | FE     | Not connected  |

## **Requirements for applications in USA and Canada**

Use a NEC Class 2 or a limited voltage/limited current power supply as an external 24 V DC voltage source.

#### **Further information**

A number of converters can be connected via the same AS-i cable to the 24 V power supply with a total current of up to 8 A. Further connection information can be found in the AS-Interface system manual.

Overview of the manuals (Page 592)

# 4.14.3 Setting the address

As factory setting, all AS-i slaves have address 0. Slaves with address 0 are not included in the communication.

The addresses must be unique, although they can be mixed as required.

You have the following options when making the address assignment:

- Automatic addressing via the AS-i master
- Addressing via the addressing device
- Addressing via parameters

Before you set the address, you must specify whether the converter is integrated as Single Slave or Dual Slave in the AS-i network.

- p2013 = 0: Single Slave (factory setting)
- p2013 = 2: Dual Slave

4.14 Connecting to AS-i

If you select the Single Slave macro (Macro 30 or 66) or the Dual Slave macro (Macro 31 or 34) during the commissioning, the AS-i mode p2013 is automatically assigned to the appropriate value.

#### Note

#### Changes made to p2012 and p2013

Changes made to the p2012 and p2013 parameters take effect immediately after the change.

If you work with a commissioning tool, you must back up the changes so they are not lost when the system is switched off and on again.

#### Automatic addressing via the AS-i master

#### **Single Slave**

For automatic addressing, the address is specified by the AS-i master. For a Single Slave, the master checks which slave has address 0 and assigns it the next free address. This address is also written to parameter p2012. If more than one slave has address 0, an automatic addressing is not possible.

#### **Dual Slave**

For automatic addressing, the address is specified by the AS-i master. If both slaves have address 0, the second slave is hidden and the control assigns a valid address for slave 1.

Slave 2 then becomes visible with address 0 and can be addressed.

Automatic addressing is not always possible for older AS-i masters. In this case, use the manual addressing and set the address from an addressing device, via Startdrive.

Further information is contained in the AS-Interface system manual, Section "Setting the AS-i address"

Overview of the manuals (Page 592)

#### Addressing via the addressing device (e.g. 3RK1904-2AB02)

Addressing via the addressing device is made offline.

Further information is contained in the AS-Interface system manual, Section "Setting the AS-i address"

Overview of the manuals (Page 592)

#### Addressing via parameters

The address assignment is made with the p2012[0] and p2012[1] parameters.

If you assign the address via a commissioning tool, you must back up the settings so that they are not lost if the power fails.

- Address range for Single Slave converter, profile 7.F.E
  - p2012[1]: 0 ... 31, range for the A address, 0A ... 31A
- Address range for Dual Slave converter, profile 7.A.5 or 7.A.E
  - p2012[0]: 0 ... 31, 33 ... 63 for slave 1:
  - p2012[1]: 0 ... 31, 33 ... 63 for slave 2:

with

- 0 ... 31 range for the A address, 0A ... 31A
- 33 ... 63 range for B address, 1B ... 31B

# 4.14.4 Using the AS-i Programmer

#### Setting the slave address with the AS-i Address Programmer

The converter contains two logical AS-i slaves. Either slave can be assigned an address in the range 1A...31A or 1B...31B. The addresses can be allocated to the slaves sequentially, for example, 3A and 4A, 10B and 11B or they can occupy the same number using extended addressing, for example, 20A and 20B. If necessary they can have completely different unassociated addresses, for example, 14A and 16B.

The decision on how to allocate these addresses must also take into account the addressing used in the PLC program by either adherence to the memory map of the AS-i master or the way in which the inputs and outputs can be allocated by the PLC hardware configuration.

The default address of both slaves is 0.

#### Setting the AS-i address of slave 1

- 1. Plug the AS-i Programmer into the addressing socket (interface X03) of the converter.
- 2. Turn the dial on the Programmer to the **ADDR** position. The display will indicate that this mode has been selected.
- 3. Press the \_\_\_\_\_ button; the screen will display the text, **SEt 0** with a small flashing **0** to the left of the display.
- Press the button until you reach the required number. By pressing both the and simultaneously, you can toggle between A and B identifiers of the address.
- Press the \_\_\_\_\_ button to confirm the selected address.
   ProG is momentarily displayed, followed by AddrES.
   The number allocated to slave 1 is now shown at the bottom of the display.



RddrE

5 E E

4.14 Connecting to AS-i

# Setting the AS-i address of slave 2

1. Press the \_\_\_\_\_ button; the display shows the text **SEArcH** followed by **uSE 0**.

A small **0** is displayed to the left of the display and the number of the first slave that has already been allocated to slave 1 is shown at the bottom of the display.

- Press the \_\_\_\_\_ button to select this number.
   SEt 0 appears and the small 0 in the left of the display starts flashing.
- Press the button until you reach the required number.
   By pressing both the and simultaneously, you can toggle between A and B identifiers of the address.
- 4. Press the \_\_\_\_\_ button to accept this number.
  ProG is displayed briefly.
  Both of the numbers allocated to the slaves are now displayed in the

Pro5 USE 218

## Changing existing addresses of the AS-i slaves

lower part of the screen.

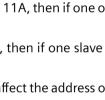
If the allocated addresses used two different numbers, for example, 10A and 11A, then if one of the slave addresses is reset to 0 the other slave is not affected.

If the allocated addresses use the same number, for example, 20A and 20B, then if one slave address is reset to 0, then both slave numbers will be reset to 0.

Modifying an existing address of a single slave within the converter will not affect the address of the other slave.

To change an existing address of a slave, the following procedure should be performed:

- 1. Plug the AS-i Programmer into the addressing socket (interface X03) of the converter.
- 2. Turn the dial on the Programmer to the **ADDR** position. The display will indicate that this mode has been selected.
- 3. Press the \_\_\_\_\_ button; the screen will display **uSE** and the number of the lower addressed slave.


The existing slave addresses are shown at the bottom of the display.

- 4. Press the 🛖 and 🕁 buttons to select the slave address number to be changed.
- 5. Press the \_\_\_\_\_ button; the display now shows **SEt**. The selected number will begin to flash.



RddrES





4.16 Grounding the converter housing

- 6. Press the And buttons to select the new slave address number.
- Press the \_\_\_\_\_ button to confirm the new address.
   ProG is displayed briefly followed by confirmation of the address change.

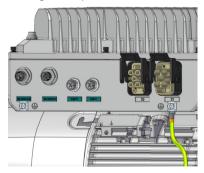


Further information on the operation as Ethernet nodes can be found in the Function Manual "Fieldbuses".

Overview of the manuals (Page 592)

# 4.15 Connecting to SINAMICS G115D I/O variant

The SINAMICS G115D I/O variant uses I/O terminals to realize converter control functions. For more information on connecting the I/O terminals, refer to Section "Connecting the digital inputs and outputs".


Connecting the digital inputs and outputs (Page 86)

# 4.16 Grounding the converter housing

To ensure that the converter is properly grounded and protected, you **MUST** connect an earthing cable to the converter housing.

- Connect the PE terminal on the converter housing to an appropriate grounding point of the installation.
- Use a short wire connection.
- Clean the connection to the steel construction from paint or dirt.
- Use a UL-approved ring-type cable lug to terminate the earthing cable to ensure a good physical connection which is resistant to accidental disconnection.

Wiring example of motor-mounted converter Wiring example of wall-mounted converter



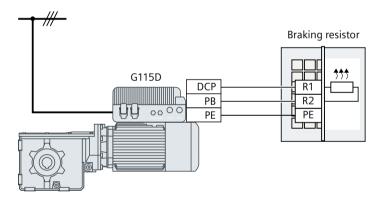


4.17 Connecting the external braking resistor

**Note:** For the G115D Motor Mounted, use the PE terminal which is close to the motor drive end (DE) to ground the converter housing. Minimum cable cross-section: 4 mm<sup>2</sup> (AWG 10) PE terminal tightening torque: 1.5 Nm (13.3 lbf.in)

4.17 Connecting the external braking resistor



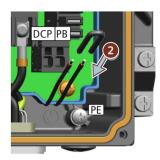

# 

#### Electric shock as a result of a residual charge in power components

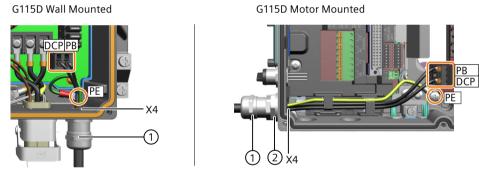
After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level. Therefore, touching the converter immediately after powering off can result in electric shock due to residual charge in the power components.

• Check the voltage at the converter connections before you connect the external braking resistor.

#### **Connection overview**




#### Procedure

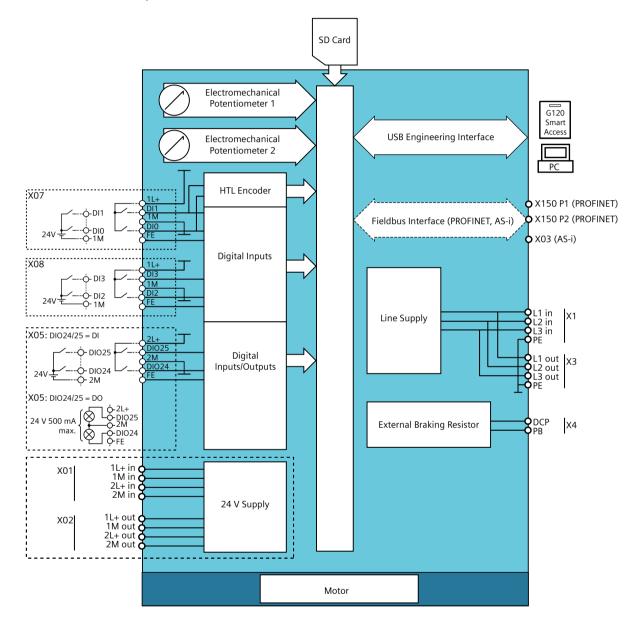

- 1. Switch off all power supplies (line supply and external 24 V power supply) to the converter.
- 2. Wait 5 minutes to allow the converter to discharge and check that no voltage is present at the converter connections.
- 3. Release the retaining screws (6 x M4) on the Electronic Module by using a 3 mm allen key, and remove the module.

4. Remove the internal braking resistor connection from the terminal block DCP/PB in the Wiring Module, and insulate the cable conductors with the heat-shrinkable tube.

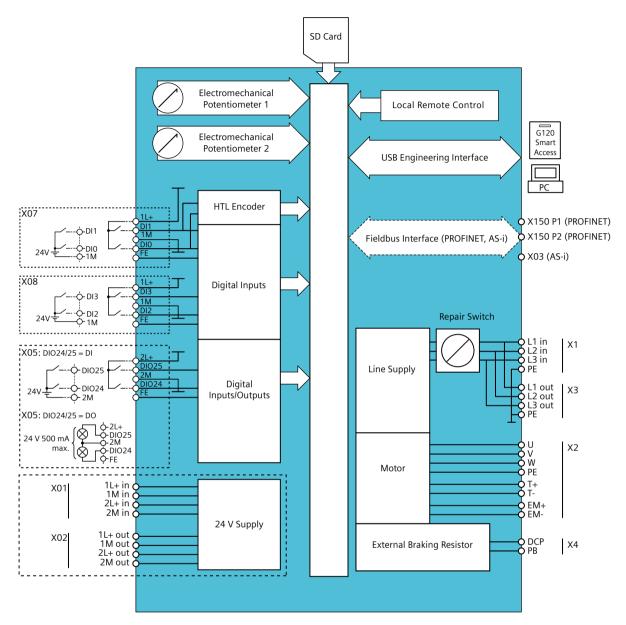




- 5. Remove the blanking cap at interface X4 and install the M16 cable gland.
  - For the G115D wall-mounted converter, directly install the M16 cable gland ① at interface X4. If you do not use the provided cable gland, make sure that the thread length of the cable gland you use is no more than 9 mm.
  - For the G115D motor-mounted converter, firstly install the M16 reducer 2 at interface X4, and then install the M16 cable gland 1 on the M16 reducer.




- 6. Remove the insulation from the end of the braking resistor cable to expose the braided cable shield. Turn up the cable shield. Pass the cable through the cable gland and make the exposed braided cable shield in close contact with the inner surface of the cable gland. Make sure that the cable shield is connected to the shield bonding options for cables and the unit housing respectively with excellent electrical conductivity and a large contact area.
- 7. Connect the external braking resistor cable to the terminal block DCP/PB and the PE terminal.
- 8. Re-attach the Electronic Module with a tightening torque of 2.5 Nm (22.1 lbf.in).


4.18 Connection examples

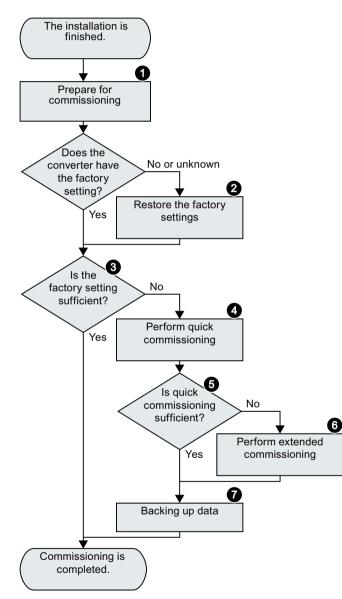
### 4.18 Connection examples

### Connection example for G115D Motor Mounted



### Connection example for G115D Wall Mounted




### Wiring

4.18 Connection examples

# Commissioning

## 5.1 Commissioning guidelines





- Define the requirements to be met by the drive for your application.
   Preparing for commissioning (Page 113)
- Restore the factory settings of the converter if necessary.
  - Restoring the factory settings (Page 131)
- Check if the factory setting of the converter is sufficient for your application.
   Factory settings (Page 113)
- 4. Perform quick commissioning of the drive in one of the following ways:
  - Quick commissioning with DIP switches (Page 119)
  - Quick commissioning with a PC (Startdrive) (Page 122)
  - Quick commissioning with the SINAM-ICS G120 Smart Access (Page 129)
- 5. Check if additional converter functions are required for the application.
   Advanced commissioning (Page 135)
- 6. If necessary, adapt the drive.
- 7. Save your settings and perform data backup.
  - ☐∑ Saving the settings in the converter (RAM → EEPROM) (Page 130)
  - Data backup and series commissioning (Page 339)

5.2 Commissioning tools

### 5.2 Commissioning tools

### PC tool - Startdrive

Startdrive is a PC tool that is used to commission, troubleshoot and control the drive, as well as to back up and transfer the drive settings. You can connect the PC with the converter via a USB cable or via the PROFINET fieldbus. The maximum permissible length of the USB cable is 3 m.

For the PROFINET variant, the supported Startdrive version is 16.4 or later.

For the AS-i and I/O variants, the supported Startdrive version is 16.5 or later.

#### System requirements and download

Internet: Startdrive download (<u>https://support.industry.siemens.com/cs/ww/en/view/</u> 109771710)

#### Note

#### Commissioning and/or diagnostic failure resulting from unsafe mobile device or PC

Using unsafe mobile devices or PC to commission and/or diagnose the converter through commissioning tools can cause system failure or unsafe operating status in your system.

 Maintain the mobile device or PC for commissioning and diagnostics according to the security guidelines, for example, by deploying the patches for the operating system, activating firewalls, or using a virus scanner.

### SINAMICS G120 Smart Access



The SINAMICS G120 Smart Access is a Web server module and an engineering tool that provides wireless connection to a PC, a tablet, or a smartphone. It has been designed for quick setup, parameterization and diagnostics of the supported SINAMICS G120 converter or SINAMICS G115D converter. The SINAMICS G120 Smart Access is only for commissioning and thus cannot be used with the converter permanently.

Operating instructions of the SINAMICS G120 Smart Access:

Cverview of the manuals (Page 592)

### **Compliance with the General Data Protection Regulation**

Siemens respects the principles of data protection, in particular the data minimization rules (privacy by design).

For this product, it has the following meaning:

The product neither processes nor stores any person-related data. The product only processes or stores technical function data (e.g. time stamps). If you link these data with other data (e.g. shift plans) or store person-related data on the same data medium (e.g. hard disk), i.e. personalizing the data, you must ensure full compliance with the applicable data protection stipulations.

#### Preparing for commissioning 5.3

#### 5.3.1 **Factory settings**

### Motor

For the SINAMICS G115D Wall Mounted drive, the converter is pre-configured for an asynchronous motor that matches the rated power of the converter.

For the SINAMICS G115D Motor Mounted drive, the following converter settings have been set in the factory to the delivery condition to match the provided 2KJ8 geared motor.

| Parameter | Description                                       | Delivery condition                                                                                                             |  |  |
|-----------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| p1300[0n] | Open-loop/closed-loop control op-<br>erating mode | 20: Speed control (encoderless)                                                                                                |  |  |
| p0300[0n] | Motor type selection                              | The value is automatically preassigned to "181" or<br>"602" dependent upon the selected SINAMICS<br>G115D Motor Mounted drive. |  |  |
|           |                                                   | 181: 2KJ8 asynchronous motor                                                                                                   |  |  |
|           |                                                   | 602: 2KJ8 synchronous reluctance motor                                                                                         |  |  |
| p0301[0n] | Motor code number selection                       | The value is automatically preassigned depender                                                                                |  |  |
| p0541[0n] | Load gearbox code number                          | upon the selected SINAMICS G115D Motor Moun-                                                                                   |  |  |
| p0551[0n] | Brake code number                                 | ted drive.                                                                                                                     |  |  |
| p0601[0n] | Motor temperature sensor type                     |                                                                                                                                |  |  |
| p1215     | Motor holding brake configuration                 | The value is automatically preassigned to "0" or "1<br>dependent upon the selected SINAMICS G115D<br>Motor Mounted drive.      |  |  |
|           |                                                   | 0: No motor holding brake available                                                                                            |  |  |
|           |                                                   | 1: Motor holding brake according to sequence con-<br>trol                                                                      |  |  |

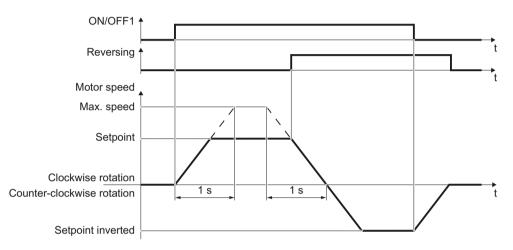
For more information about restoring settings to the delivery condition on the SINAMICS G115D Motor Mounted drive, refer to the following section:

Restoring the factory settings/delivery condition (without safety functions) (Page 131)

### **Converter interfaces**

The inputs and outputs and the fieldbus interface of the converter have specific functions when set to the factory settings.



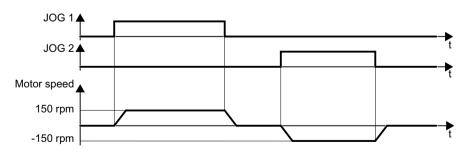

Factory interface setting (Page 87)

#### 5.3 Preparing for commissioning

### Switching the motor on and off

The converter is set in the factory as follows:

- For a converter with PROFINET or AS-i communication, the motor is switched on and off via the fieldbus.
- After the ON command, the motor accelerates with a ramp-up time of 1 s (referred to the maximum speed) to its speed setpoint.
- After the OFF1 command, the motor brakes down to standstill with 1 s ramp-down time.
- The motor direction of rotation reverses with the reversing command.




The ramp-up and ramp-down times define the maximum motor acceleration when the speed setpoint changes. The ramp-up and ramp-down times are derived from the time between motor standstill and the maximum speed, or between the maximum speed and motor standstill.

### Traversing the motor in JOG mode

You can use a commissioning tool (e.g., Startdrive or SINAMICS G120 Smart Access) or the local/ remote control (LRC) panel to operate the motor in JOG mode.

When a control command is received, the motor rotates at ±150 rpm. The same ramp-up and ramp-down times as described above apply.



### 5.3.2 Collecting motor data

### G115D converter with SIMOGEAR geared motor

If you use a G115D converter with SIMOGEAR geared motor, you do not need to input specific motor data since all necessary motor data is pre-configured in the factory.

For more information about the detailed motor data, refer to the following section:

Rating plate for geared motors with SINAMICS G115D Motor Mounted (Page 444)

### G115D wall-mounted converter

For a G115D wall-mounted converter, if you use a SIMOGEAR geared motor for SINAMICS G115D, you only need to specify the article number of the motor in the commissioning tool (Startdrive or SINAMICS G120 Smart Access); otherwise, you must enter the data shown on the motor rating plate.

### Data for a SIMOGEAR geared motor

Rating plate for geared motors with SINAMICS G115D Wall Mounted (Page 445)

Pay attention to the connection of the motor (star connection [Y] or delta connection  $[\Delta]$ ). Note the appropriate motor data for connecting.

5.3 Preparing for commissioning

### Data for a standard asynchronous motor

Before starting commissioning, you must know the following data:

### • Which motor is connected to the converter?

Note down the article number of the motor on the motor rating plate. If available, note down the motor code on the motor rating plate. See below for an example of the rating plate for a standard asynchronous motor:

|      | Article number   |         |                    |         |       |         |             |           |          |              |            |
|------|------------------|---------|--------------------|---------|-------|---------|-------------|-----------|----------|--------------|------------|
|      | SIE<br>Made in ( | Czech R | ep.                | -       | /     |         |             |           |          | $\mathbb{H}$ | CE         |
|      | 3~Mot.           | 1AV3    |                    | 1LE1043 |       | AA0-Z   | UD 1410     | /1410842- | -001-001 |              |            |
|      | IEC/EN 6         |         |                    |         | P55   |         |             |           |          |              |            |
|      | 20kg             | Th.CI.1 | 55(F)              | 20°C<=  | TAMB< | =40°C   |             |           |          |              |            |
|      |                  | Bea     | aring              |         |       |         |             |           |          |              |            |
|      |                  |         | 05-2ZC3<br>04-2ZC3 |         |       |         |             |           |          |              | $\bigcirc$ |
|      | V                | Hz      | Α                  | kW      | cos φ | NOM.EFF | 1/min       | IE-CL     |          |              | Code       |
| IEC  | 230 🛆            | 50      | 7.3                | 2.20    | 0.88  | 85.9    | 2910        | IE3       |          |              |            |
| IEC  | 400 Y            | 50      | 4.20               | 2.20    | 0.88  | 85.9    | 2910        | IE3       |          |              |            |
| NEMA | 460 Y            | 60      | 4.20               | 2.55    | 0.88  | 86.5    | 3510        | IE3       |          |              |            |
| NEMA | 460 Y            | 60      | 3.65               | 2.20    | 0.87  | 86.5    | 3530        | IE3       |          |              |            |
|      |                  |         |                    |         |       |         | $\neg \neg$ |           |          |              |            |
|      |                  |         |                    | P       | owei  | r       | S           | peed      |          |              |            |
|      | Vo               | oltage  | -                  | unen    | i.    |         |             |           |          |              |            |

- In which region of the world is the motor to be used?
  - Europe IEC: 50 Hz [kW] - North America NEMA: 60 Hz [hp] or 60 Hz [kW]
- How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection  $[\Delta]$ ). Note the appropriate motor data for connecting.

5.3 Preparing for commissioning

### Data for a synchronous reluctance motor

Before starting commissioning, you must know the following data:

#### • Which motor is connected to the converter?

Note down the motor code on the rating plate of the motor. See below for an example of the rating plate for a reluctance motor:

| SIE               |         |                  | 5       |                     |        |       |        |       |        | H          | ) C€  |
|-------------------|---------|------------------|---------|---------------------|--------|-------|--------|-------|--------|------------|-------|
| Made in<br>3~Mot. | 1RV42   |                  | 1FP100- | 42AB52 <sup>-</sup> | 1AF4   | E     | XXX/X  | xxxx  | X XX ( | 001        |       |
| IEC/EN 6          | 60034   | 200L             | . IM    | B3                  | P55    |       |        |       |        |            |       |
| 167 kg 1          | h.Cl. 1 | 55(F)            | -20°C   | <=TAME              | <=40°( | 0     |        |       |        |            |       |
|                   | Be      | aring            |         |                     |        |       |        |       |        |            |       |
| () -              |         | 12-ZC3<br>12-ZC3 |         |                     |        |       |        |       |        |            | 0     |
|                   |         |                  |         | JTY ON              | LY VF  | WM :  | SINAMI | CS NI | MAX    | 4500 1/min |       |
| V                 | Hz      | A                | kW      | cos φ               | Nm     | 1/min | EFF    |       |        |            | Code  |
| 380 Y             | 50      | 68               | 30.0    | 0.71                | 191    | 1500  | 94.9   |       |        |            | 60007 |
| 220 A             | 50      | 117              | 30.0    | 0.71                | 191    | 1500  | 94.9   |       |        |            |       |
| 440 Y             | 60      | 66               | 34.5    | 0.72                | 183    | 1800  | 95.9   |       |        |            |       |
| 380 A             | 87      | 118              | 52.0    | 0.71                | 191    | 2610  | 94.4   |       |        |            |       |
|                   |         |                  |         |                     |        |       |        |       |        |            |       |

- In which region of the world is the motor to be used?
   Europe IEC: 50 Hz [kW]
  - North America NEMA: 60 Hz [hp] or 60 Hz [kW]
- How is the motor connected?

Pay attention to the connection of the motor (star connection [Y] or delta connection  $[\Delta]$ ). Note the appropriate motor data for connecting.

### 5.3.3 Selecting U/f control or speed control

For reluctance motors and permanent magnet synchronous motors, sensorless vector control (SLVC) is mandatory (p1300 = 20).

For asynchronous motors (2KJ8 asynchronous motors excluded), there are two different openloop control or closed-loop control techniques:

- U/f control (calculation of the motor voltage using a characteristic curve)
- Closed-loop speed control (i.e. field-oriented control or vector control)

For 2KJ8 asynchronous motors, sensorless vector control (SLVC) is recommended (p1300 = 20).

### Criteria for selecting either U/f control or speed control

In many applications, U/f control suffices to change the speed of asynchronous motors. Examples of typical applications for U/f control include:

- Horizontal conveyors
- Pumps
- Fans
- Compressors

### Commissioning

5.3 Preparing for commissioning

When compared to U/f control, vector control offers the following advantages:

- The speed is more stable for motor load changes.
- Shorter accelerating times when the setpoint changes.
- Acceleration and braking are possible with an adjustable maximum torque.
- Improved protection of the motor and the driven machine as a result of the adjustable torque limiting.
- Torque control is only possible with vector control.

Examples of typical applications in which speed control is used:

- Hoisting gear and vertical conveyors
- Winders
- Extruders

It is not permissible to use speed control in the following cases:

- If the motor is too small in comparison to the converter (the rated motor power must not be less than one quarter of the rated converter power).
- When you operate several motors on one converter.
- When the maximum motor (4-pole) speed exceeds the following values:

|                     | Converter pulse frequency |                  |  |
|---------------------|---------------------------|------------------|--|
|                     | 2 kHz                     | 4 kHz and higher |  |
| Maximum motor speed | 4980 rpm                  | 7200 rpm         |  |

### 5.3.4 Calculating maximum speed for permanent magnet synchronous motors

### 

#### Damage to the converter due to generator-driven motor

If the load machine drives the permanent magnet synchronous motor unintentionally, the permanent magnet synchronous motor charges the DC link of the converter. An impermissibly high DC link voltage can destroy the DC link capacitors of the converter.

• Ensure that the motor speed always remains below the calculated maximum speed even when the converter is disconnected from the power supply, e.g. via the brake on the load machine.

Calculate the maximum speed:

| $n_{\text{max}} = n_{\text{rated}}$ | $-\sqrt{\frac{3}{2}} \cdot \frac{U_{DCmax} \cdot I_{rated}}{P_{rated}}$ |
|-------------------------------------|-------------------------------------------------------------------------|
| n <sub>rated</sub>                  | Rated motor speed                                                       |
| $U_{DCmax}$                         | Maximum permissible DC link voltage in converter:                       |
|                                     | $V_{DC max}$ = 820 V for mains voltage 380 V 480 V 3 AC                 |
| I <sub>rated</sub>                  | Rated motor current                                                     |
| $P_{rated}$                         | Rated motor power                                                       |

## 5.4 Quick commissioning

### 5.4.1 Quick commissioning with DIP switches

### Overview

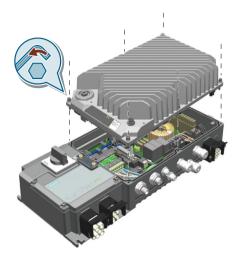
The G115D converters have been designed to allow quick commissioning to be performed using two sets of DIP switches. The DIP switches are located on the Wiring Module. To access the DIP switches, you must first remove the Electronic Module.

### Accessing the DIP switches



### WARNING

Electric shock caused by dangerous voltages and currents in the active converter

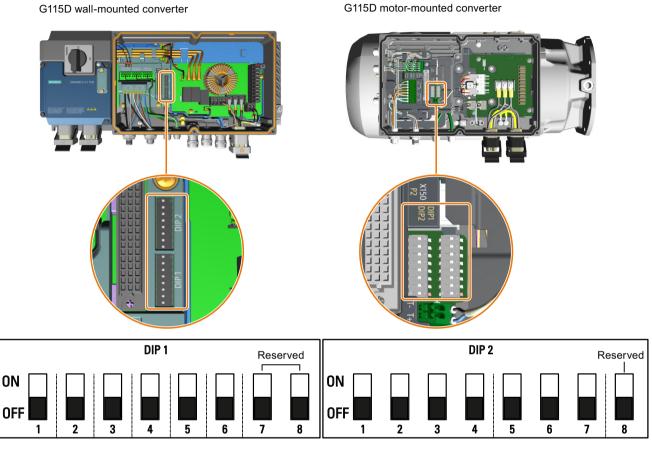

When power is applied to the converter, even when it is not active, dangerous levels of voltage and current are present in the system.

Before attempting the removal of any components of the system, the following steps should be taken to ensure that the system is completely safe:

- 1. Disconnect all mains power supplies (line supply and external 24 V power supply) to the system.
- 2. Wait five minutes to allow all the residual current and voltages to dissipate fully.
- 3. Check the voltage at the converter connections before removing any component.

Release the retaining screws (6 x M4) for the Electronic Module by using a 3 mm allen key, and then remove the module, as shown in the figure below:

5.4 Quick commissioning




### Note

Reattach the screws with a tightening torque of 2.5 Nm (22.1 lbf.in).

### **Function description**

You can use the DIP switches to perform basic commissioning and functional settings without using additional commissioning tools.



When the DIP switches are in the OFF position (by default), the value of the function is defined by the value of the according parameter(s) (see tables below). If the DIP switch is activated for a specific function, then the parameter(s) for that function cannot be modified by manually editing the parameter value.

| Commissioning | DIP switches 1.1 <sup>1</sup> | 1.6 |
|---------------|-------------------------------|-----|
|---------------|-------------------------------|-----|

| DIP switch | Function                      | Value                                          |              |  |  |
|------------|-------------------------------|------------------------------------------------|--------------|--|--|
|            |                               | ON position                                    | OFF position |  |  |
| DIP 1.1    | Motor temperature sensor type | Pt1000                                         | p0601        |  |  |
| DIP 1.2    | Motor direction reversal      | reversed                                       | p1820        |  |  |
| DIP 1.3    | EM brake configuration        | Brake according to sequence control            | p1215        |  |  |
| DIP 1.4    | Pulse frequency               | 16 kHz                                         | p1800        |  |  |
| DIP 1.5    | Motor type selection          | Reluctance motor                               | p0300        |  |  |
| DIP 1.6    | 87 Hz operation               | 87 Hz operation possible in a delta connection | p0133        |  |  |

5.4 Quick commissioning

|         | Value   |         |         |                               |
|---------|---------|---------|---------|-------------------------------|
| DIP 2.1 | DIP 2.2 | DIP 2.3 | DIP 2.4 |                               |
| OFF     | OFF     | OFF     | OFF     | p1120, p1121,<br>p1138, p1139 |
| ON      | OFF     | OFF     | OFF     | 0.1 s                         |
| OFF     | ON      | OFF     | OFF     | 0.2 s                         |
| ON      | ON      | OFF     | OFF     | 0.3 s                         |
| OFF     | OFF     | ON      | OFF     | 0.5 s                         |
| ON      | OFF     | ON      | OFF     | 0.7 s                         |
| OFF     | ON      | ON      | OFF     | 1 s                           |
| ON      | ON      | ON      | OFF     | 2 s                           |
| OFF     | OFF     | OFF     | ON      | 3 s                           |
| ON      | OFF     | OFF     | ON      | 5 s                           |
| OFF     | ON      | OFF     | ON      | 7 s                           |
| ON      | ON      | OFF     | ON      | 10 s                          |
| OFF     | OFF     | ON      | ON      | 20 s                          |
| ON      | OFF     | ON      | ON      | 30 s                          |
| OFF     | ON      | ON      | ON      | 50 s                          |
| ON      | ON      | ON      | ON      | 70 s                          |

### Commissioning DIP switches 2.1 ... 2.4: ramp-up and ramp-down times

Commissioning DIP switches 2.5 ... 2.7: macro selection

| DIP switch |         |         | Value for PROFI- | Value for AS-i | Value for I/O |
|------------|---------|---------|------------------|----------------|---------------|
| DIP 2.5    | DIP 2.6 | DIP 2.7 | NET variant      | variant        | variant       |
| OFF        | OFF     | OFF     | p0015 *          | p0015 *        | p0015 *       |
| ON         | OFF     | OFF     | -                | Macro 31       | Macro 9       |
| OFF        | ON      | OFF     | -                | Macro 34       | Macro 60      |
| ON         | ON      | OFF     | -                | Macro 66       | Macro 61      |
| OFF        | OFF     | ON      | -                | -              | Macro 62      |
| ON         | OFF     | ON      | -                | -              | Macro 63      |
| OFF        | ON      | ON      | -                | -              | Macro 64      |

\* You must carry out quick commissioning in order to set parameter p0015.

For more information about the p0015 macros, see Section "Factory interface setting (Page 87)".

### 5.4.2 Quick commissioning with a PC (Startdrive)

### Overview

You can use a PC installed with Startdrive to perform quick commissioning via a USB or PROFINET interface. This chapter describes the commissioning via a USB interface.

The screen forms that are shown in this manual show generally valid examples. The number of setting options available in screen forms depends on the particular converter type.

### 5.4.2.1 Creating a project

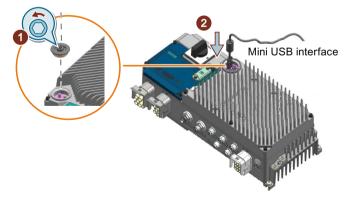
### Procedure

- 1. Start the Startdrive commissioning software.
- 2. Switch to project view by clicking on the link at the bottom left of the window, as shown below:

Project view

3. In the menu, select the following command:

| ଅନୁ Siem | ens     |      |        |        |
|----------|---------|------|--------|--------|
| Project  | Edit    | View | Insert | Online |
| 👋 New.   |         |      |        | L III  |
| 📑 Opến   |         |      | Ctrl+O |        |
| Migra    | te proj |      |        |        |
| Close    |         |      | Ctrl+W |        |


4. Specify a name of your choice for the project.

You have created a new project.  $\Box$ 

### 5.4.2.2 Integrating the converter into the project

### Procedure

- 1. Switch on the converter power supply.
- 2. Remove the commissioning cover (1) from the G115D converter by using an S12 hex nut driver and insert a USB cable to establish the connection between your PC and the converter.



#### Note

Reattach the commissioning cover with a tightening torque of 2.5 Nm (22.1 lbf.in).

### 5.4 Quick commissioning

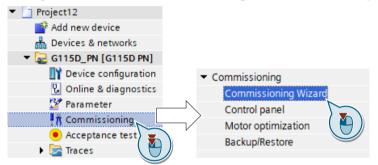
- 3. The PC operating system installs the USB driver when you are connecting the converter and PC together for the first time.
- 4. Click on the 🛃 button in the toolbar to open the window of accessible devices.
- 5. When the USB interface is appropriately set, then the screen form shows the devices that can be accessed.

| Accessible devices |                                                                        |                |               |             | × |
|--------------------|------------------------------------------------------------------------|----------------|---------------|-------------|---|
| -                  | Type of the PG/PC interfac<br>PG/PC interfac<br>he selected interface: |                |               | •<br>•      |   |
| Device             | Device type                                                            | Interface type | Address       | MAC address |   |
| G115D_PN           | G115D PN V4.7.13                                                       | S7USB          | ST-YMXXYZZZZZ | -           |   |
| lin.               |                                                                        |                |               |             |   |

- 6. Select the desired device and click on the **Show** button.
- 7. Transfer the converter into the project using the following menu:

| Siemens - D:\UserData\z00                                | )3sn8j\Documents\Automation\Project12\Proje                               | ct12     |
|----------------------------------------------------------|---------------------------------------------------------------------------|----------|
| <u>P</u> roject <u>E</u> dit <u>V</u> iew <u>I</u> nsert | <u>O</u> nline Optio <u>n</u> s <u>T</u> ools <u>W</u> indow <u>H</u> elp |          |
| 📑 📑 🔚 Save project 🛛 릚                                   | Ø Go o <u>n</u> line                                                      | Ctrl+K   |
| Project tree                                             | 🖉 Extended go online                                                      |          |
|                                                          | 🖉 Go o <u>f</u> fline                                                     | Ctrl+M   |
| Devices                                                  | 🖳 Simula <u>t</u> ion                                                     | •        |
| 1 Bř                                                     | Download to device                                                        | Ctrl+L   |
|                                                          | Extended download to device                                               |          |
| Project12                                                | Download and reset PLC program                                            |          |
| Add new device                                           | Download user program to Memory Card                                      |          |
| 😽 📩 Devices & networks                                   | Upload from device (software)                                             |          |
| Ungrouped devices                                        | Upload device as new station (hardware and so                             | oftware) |
| 🕨 🛃 Security settings                                    | Backup from wine device                                                   |          |
| Cross-device function                                    | Detection of the device configuration                                     |          |

You have integrated a converter accessible via the USB interface into your project.  $\hfill\square$ 


### 5.4.2.3 Starting the Commissioning Wizard

### Procedure

- 1. Select your project and click on the 🥖 😡 online button to establish the online connection.
- 2. In the following screen form, select the converter with which you wish to go online.

| Select devices for opening the online connection |                |             |
|--------------------------------------------------|----------------|-------------|
| Name                                             | Interface type | 🗹 Go online |
| G115D_PN                                         | G115D PN       |             |
|                                                  |                |             |
|                                                  |                |             |

### 3. Once you are online, select the following command from the project tree:



You have started the Commissioning Wizard of the converter.  $\hfill\square$ 

### 5.4.2.4 Carrying out quick commissioning

|                        | Procedure                                                                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Open-loop/closed-loop  | Select motor control mode.                                                                                                                     |
|                        | Motor control (Page 278)                                                                                                                       |
| Defaults of the setpoi | Select the I/O configuration to pre-assign the converter interfaces.                                                                           |
|                        | Factory interface setting (Page 87)                                                                                                            |
| Drive setting          | • Set the applicable motor standard and the converter supply voltage.                                                                          |
|                        | Select the application for the drive:                                                                                                          |
|                        | <ul> <li>[0] Load cycle with high overload: for applications requiring a high dynamic performance,<br/>e.g. conveyor systems.</li> </ul>       |
|                        | <ul> <li>[1] Load cycle with low overload: for applications that do not require a high dynamic<br/>performance, e.g. pumps or fans.</li> </ul> |
|                        | Set the pulse frequency for the converter.                                                                                                     |
| Drive options          | If an external braking resistor is installed, you must set the maximum permissible braking power of the braking resistor.                      |

### Commissioning

### 5.4 Quick commissioning

#### Motor

The geared motor of the G115D Motor Mounted drive has been parameterized before factory delivery.

- Configure your motor in either of the following ways:
  - Enter the motor data according to the rating plate of your motor.
  - If you use a Siemens motor, select a motor based on its article number. In this case, the values of the selected motor are taken as default motor data.
- Set the motor connection (star/delta) and the 87 Hz characteristic.
- Select the temperature sensor for monitoring of the motor temperature.
- Select to reverse the output phase sequence or not.

Define whether the converter actuates a motor holding brake.

Set the most important parameters to suit your application.

- Select the technological application:
  - [0]: In all applications that do not fall under [3]
  - [3]: Applications involving pumps and fans with optimized efficiency. The setting only makes sense for steady-state operation with slow speed changes.
- Set the motor data identification:
  - [1]: Recommended setting for "speed control" control type. Measure the motor data at standstill and with the motor rotating. The converter switches off the motor after the motor data identification has been completed.
  - [2]: Measure the motor data at standstill. The converter switches off the motor after the motor data identification has been completed.
    - Recommended setting for the following cases:

⇒ You have selected "Speed control" as control mode, however the motor cannot freely rotate, e.g. for mechanically limited traversing sections. ⇒ You have set "U/f control" as control mode.

- [3]: Measure the motor data while the motor is rotating. The converter switches off the motor after the motor data identification has been completed.
- Calculate the motor parameters.

Enter the encoder data if you use an HTL encoder for the positioning function via PLC.

Set the check mark as follows to save your data in the converter and the memory card (if inserted) so that it is not lost if the power fails. Click on the **Finish** button.

| RAM data to EEPROM (save data in the drive) |        |
|---------------------------------------------|--------|
| K Next >>                                   | Finish |

You have entered all of the data that is necessary for the quick commissioning of the converter.  $\hfill\square$ 

## [3]: Measure the motor data w motor after the motor data ider

Encoders

Summary

# Motor holding brake

Drive functions

### 5.4.2.5 Identifying motor data

#### Overview

Using the motor data identification, the converter measures the data of the stationary motor. In addition, based on the response of the rotating motor, the converter can determine a suitable setting for the vector control.

To start the motor data identification routine, you must switch on the motor.

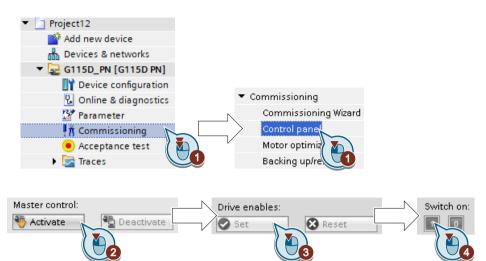
### Identifying the motor data and optimizing the closed-loop control

#### Preconditions

- You have selected a method of motor data identification during quick commissioning, e.g. measurement of the motor data while the motor is stationary.
   When quick commissioning is complete, the converter issues alarm A07991.
- The motor has cooled down to the ambient temperature. An excessively high motor temperature falsifies the motor data identification results.
- The PC and converter are connected to each other online.

### M WARNING

#### Unexpected machine motion while the motor data identification is in progress


For the stationary measurement, the motor can make several rotations. The rotating measurement accelerates the motor up to the rated speed. Secure dangerous machine parts before starting motor data identification:

- Before switching on, ensure that nobody is working on the machine or located within its working area.
- Secure the machine's work area against unintended access.
- Lower suspended loads to the floor.

### Commissioning

5.4 Quick commissioning

### Procedure



- 1. Open the control panel.
- 2. Assume master control for the converter.
- 3. Set the drive to enable state.
- 4. Switch on the motor.
  The converter starts the motor data identification. This measurement can take several minutes.
  Depending on the setting, after motor data identification has been completed, the converter switches off the motor or it accelerates it to the currently set setpoint.
- 5. If required, switch off the motor.
- 6. Relinquish the master control after the motor data identification.
- 7. Save the settings in the converter (RAM  $\rightarrow$  EEPROM) (Page 130).

You have completed the motor data identification.

### Self-optimization of the speed control

### MARNING

#### Unexpected machine motion while the motor data identification is in progress

For the stationary measurement, the motor can make several rotations. The rotating measurement accelerates the motor up to the rated speed. Secure dangerous machine parts before starting motor data identification:

- Before switching on, ensure that nobody is working on the machine or located within its working area.
- Secure the machine's work area against unintended access.
- Lower suspended loads to the floor.

If you have not only selected motor data identification with the motor stationary, but also rotating measurement with self-optimization of the speed control, you must switch on the motor again as described above and wait for the optimization run to finish.

Quick commissioning has been completed once the motor data identification has been successfully completed.

### 5.4.3 Quick commissioning with the SINAMICS G120 Smart Access

You can access the SINAMICS G120 Web pages from a PC or a mobile device that connects to the SINAMICS G120 Smart Access. The Web pages allow you to configure a comprehensive range of settings to meet the specific requirements of the G115D converters. You can perform the following three setups:

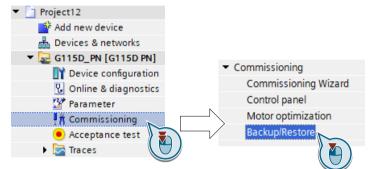
- Quick setup
- Application setup
- Safety setup



### **Further information**

For more information on accessing the SINAMICS G120 Web pages and carrying out quick commissioning, see the SINAMICS G120 Smart Access Operating Instructions.

Cverview of the manuals (Page 592)


5.5 Saving the settings in the converter (RAM  $\rightarrow$  EEPROM)

### 5.5 Saving the settings in the converter (RAM $\rightarrow$ EEPROM)

The parameter values are normally saved as volatile data in the RAM of the converter. After you finish the commissioning, you must save your settings to the converter's non-volatile memory (EEPROM) to prevent unexpected data loss. If an optional memory card is present, performing the save operations (RAM  $\rightarrow$  EEPROM) automatically copies all settings to the memory card.

### **Procedure with Startdrive**

- 1. Go online with the converter.
- 2. Select the command as follows from the project tree:



3. Click on the button in the dialog box as shown below:

| EEPROM | Save |
|--------|------|
|        |      |

You have saved your settings retentively in the EEPROM.  $\hfill\square$ 

### **Further information**

For more information on saving the settings (RAM  $\rightarrow$  EEPROM) on the SINAMICS G120 Smart Access, see Section "Parameters" in the SINAMICS G120 Smart Access Operating Instructions.

Cverview of the manuals (Page 592)

### 5.6 Restoring the factory settings

### When must you restore the factory settings?

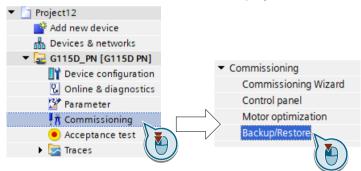
Restore the converter to the factory settings in the following cases:

- You do not know the converter settings.
- The line voltage was interrupted during commissioning and you were not able to complete commissioning.

### Restoring the factory settings when the safety functions are enabled

If you are using the integrated safety functions of the converter, e.g. "Safe Torque Off", you must reset the safety functions separately from the remaining converter settings.

The settings of the safety functions are protected by a password.


### Settings that are not changed when restoring the factory setting

The communication settings and the settings of the motor standard (IEC/NEMA) are kept when restoring the factory setting.

### 5.6.1 Restoring the factory settings/delivery condition (without safety functions)

### Procedure with Startdrive

- 1. Go online with the converter.
- 2. Select the command as follows from the project tree:



5.6 Restoring the factory settings

3. For the G115D wall-mounted converter, select the menu option as follows to restore to the factory settings:

| Restore factory setting:                                                                                                            |          |
|-------------------------------------------------------------------------------------------------------------------------------------|----------|
| All parameters will be reset All parameters will be reset Safety Integrated parameters Integrated parameter to the factory setting. | <b>↓</b> |

For the G115D motor-mounted converter, select the menu option as follows to restore to the delivery condition:

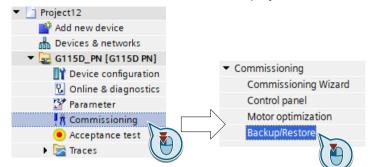
| Restore factory setting:                                |  |
|---------------------------------------------------------|--|
| Reset to delivery condition                             |  |
| All parameters will be reset to the delivery condition. |  |

- 4. Click on the Start button.
- 5. Wait until the converter has been reset to the factory settings/delivery condition.

You have reset the converter to the factory settings/delivery condition.  $\hfill\square$ 

### **Further information**

For more information on restoring on the SINAMICS G120 Smart Access, see Section "Backup and restore" in the SINAMICS G120 Smart Access Operating Instructions.


Overview of the manuals (Page 592)

SINAMICS G115D distributed drive Operating Instructions, 12/2021, FW V4.7 SP13, A5E48681219B-004

### 5.6.2 Resetting the safety functions to the factory settings

### Procedure with Startdrive

- 1. Go online with the converter.
- 2. Select the command as follows from the project tree:

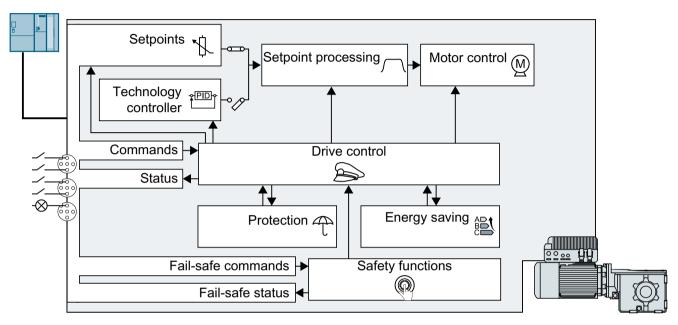


3. Select the menu option as follows:

| Restore factory setting:                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Safety Integrated parameters will be reset<br>All parameters will be reset<br>Safety Integrated parameters will be reset<br>EEPROM and perform a POWER ON. |  |

- 4. Click on the Start button.
- 5. Select the reset options as desired by setting the check marks in the following dialog box:




- 6. Enter the password for the safety functions and the resetting process starts.
- 7. Go offline with the converter after the reset finishes.
- 8. Switch off the converter power supply and wait until all LEDs on the converter are dark.
- 9. Switch on the converter power supply again.

You have restored the safety functions in the converter to the factory settings.  $\hfill\square$ 

### Commissioning

5.6 Restoring the factory settings

# Advanced commissioning



## 6.1 Overview of converter functions

### **Drive control**

The converter receives its commands from the higher-level control via the terminal strip or the fieldbus interface of the converter. The drive control defines how the converter responds to the commands.

Sequence control when switching the motor on and off (Page 137)

Adapt the default settings of the inputs and outputs (Page 139)

Controlling clockwise and counter-clockwise rotation via digital inputs (Page 142)

Drive control via PROFINET (Page 148)

Drive control via Ethernet/IP (Page 163)

Drive control via AS-i (Page 179)

Drive control via I/O terminals (Page 86)

Jogging (Page 190)

Conveyor technology control functions (for G115D PROFINET and AS-i variants only) (Page 191)

The converter can switch between different settings of the drive control.

Switching over the drive control (command data set) (Page 227)

### 6.1 Overview of converter functions

The converter can control a motor holding brake. The motor holding brake holds the motor in position when it is switched off.

Motor holding brake (Page 229)

The free function blocks permit configurable signal processing within the converter.

Free function block (Page 234)

You can select in which physical units the converter represents its associated values.

Selecting physical units (Page 235)

### Safety functions



The safety functions fulfill increased requirements regarding the functional safety of the drive.

Safe Torque Off (STO) safety function (Page 238)

### Setpoints and setpoint processing

The setpoint normally defines the motor speed.



Setpoints (Page 251)



The setpoint processing uses a ramp-function generator to prevent speed steps occurring and to limit the speed to a permissible maximum value.

Setpoint processing (Page 261)

### Technology controller



The technology controller controls process variables, e.g. pressure, temperature, level or flow. The motor control receives the setpoint either from the higher-level control or from the technology controller.

PID technology controller (Page 271)

#### Motor control



The motor control ensures that the motor follows the speed setpoint. You can choose between various control modes.

Motor control (Page 278)

The converter provides several methods to brake the motor electrically. During electrical braking, the motor develops a torque that reduces the speed to standstill.

Electrically braking the motor (Page 305)

### Protection of the drive and the driven load



The protection functions prevent damage to the motor, converter and driven load.

Overcurrent protection (Page 311)

Converter protection using temperature monitoring (Page 312)

6.2 Sequence control when switching the motor on and off

Motor temperature monitoring using a temperature sensor (Page 316)

 $\square$  Motor protection by calculating the temperature (Page 319)

Motor and converter protection by limiting the voltage (Page 321)

The monitoring of the driven load prevents impermissible operating modes, e.g. dry-running of a pump.

 $\square$  Monitoring the driven load (Page 323)

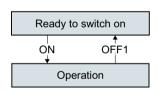
### **Energy saving**



The converter can optimize the efficiency of the motor.

Efficiency optimization (Page 330)

The converter calculates how much energy controlled converter operation saves when compared to mechanical flow control (e.g. throttle).


Calculating the energy saving for fluid flow machines (Page 333)

#### 6.2 Sequence control when switching the motor on and off

### Overview



The sequence control defines the rules for switching the motor on and off.



After switching the supply voltage on, the converter normally goes into the "ready to start" state. In this state, the converter waits for the command to switch on the motor.

The converter switches on the motor with the ON command. The converter changes to the "Operation" state.

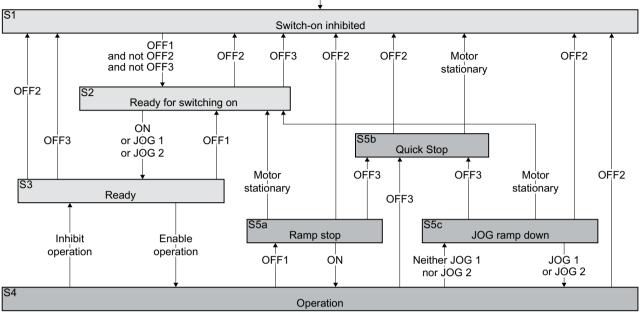
After the OFF1 command, the converter brakes the motor down to standstill. The converter switches off the motor once standstill has been reached. The converter is again "ready to start".

### Requirement

#### **Functions**

In order to be able to respond to external commands, you must set the command interface so that it fits your specific application.

### Tools


To change the function settings, you can use a commissioning tool.



Commissioning tools (Page 112)

6.2 Sequence control when switching the motor on and off

### **Function description**



Switch on the power supply of the converter

Converter states S1 ... S5c are defined in the PROFIdrive profile. The sequence control defines the transition from one state to another.

| The motor is switched off                                                     |                                                                                                                                                                                | The motor is switched on                                    |                                                                                                                               |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Current does not flow in the motor and the motor does not generate any torque |                                                                                                                                                                                | Current flows in the motor and the motor generates a torque |                                                                                                                               |
| S1                                                                            | The converter waits for a new ON command.<br>The ON command is currently active. You must ac-<br>tivate the ON command again in order that the con-<br>verter exits the state. | S4                                                          | The motor is switched on.                                                                                                     |
| S2                                                                            | The converter waits for a new command to switch on the motor.                                                                                                                  | S5a,<br>S5c                                                 | The motor is still switched on. The converter brakes<br>the motor with the ramp-down time of the ramp-<br>function generator. |
| S3                                                                            | The converter waits for "Enable operation". The "En-<br>able operation" command is always active in the<br>converter factory setting.                                          | S5b                                                         | The motor is still switched on. The converter brakes the motor with the OFF3 ramp-down time.                                  |

#### **Converter states**

6.3 Adapt the default settings of the inputs and outputs

| ON                | The converter switches the motor on.                                                                |
|-------------------|-----------------------------------------------------------------------------------------------------|
| JOG 1             |                                                                                                     |
| JOG 2             |                                                                                                     |
| Enable operation  |                                                                                                     |
| OFF1, OFF3        | The converter brakes the motor. The converter switches off the motor once it comes to a standstill. |
|                   | The motor is considered to be stationary if the speed is less than a defined minimum speed.         |
| OFF2              | The converter switches off the motor immediately without first braking it.                          |
| Inhibit operation |                                                                                                     |

### Commands for switching the motor on and off

### **Further information**

You will find additional information in function diagram 2610 of the List Manual.

### 6.3 Adapt the default settings of the inputs and outputs

### 6.3.1 Overview

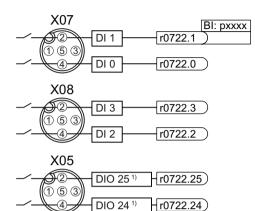


In the converter, the input and output signals are interconnected with specific converter functions using special parameters. The following parameters are available to interconnect signals:

- Binectors BI and BO are parameters to interconnect binary signals.
- Connectors CI and CO are parameters to interconnect analog signals.

This chapter describes how you adapt the function of individual converter inputs and outputs using binectors and connectors.

|            |                      | BI: pxxxx   |
|------------|----------------------|-------------|
|            | DI 0                 | -r0722.0    |
| X07        |                      | BI: pxxxx   |
| $ ^{\sim}$ | DI 1                 | -r0722.1    |
|            |                      | BI: pxxxx   |
| 6          | DI 2                 | -r0722.2 )  |
| X08        |                      | BI: pxxxx   |
|            | DI 3                 | -r0722.3 )  |
|            |                      | BI: pxxxx   |
|            | DIO 24 <sup>1)</sup> | -r0722.24)  |
| X05        |                      | BI: pxxxx   |
| Ĺ          | DIO 25 <sup>1)</sup> | -r0722.25)  |
|            |                      | p0738       |
| 6          | DIO 24 <sup>2)</sup> | BO: ryyxx.n |
| X05        |                      | p0739       |
|            | DIO 25 <sup>2)</sup> | BO: ryyxx.n |
|            |                      |             |


<sup>1)</sup> If parameterized as digital inputs via p0728

<sup>2)</sup> If parameterized as digital outputs via p0728

6.3 Adapt the default settings of the inputs and outputs

### 6.3.2 Digital Inputs

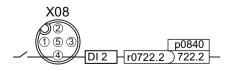
### Changing the function of the digital inputs



<sup>1)</sup> Parameterized as digital inputs

Binector inputs (BI) of the converter

Interconnect the status parameter of the digital input with a binector input of your choice.


[Interconnecting signals in the converter (Page 585)

Binector inputs are marked with "BI" in the parameter list of the List Manual.

| BI    | Significance                             | BI    | Significance                                        |
|-------|------------------------------------------|-------|-----------------------------------------------------|
| p0810 | Command data set selection CDS bit 0     | p1036 | Motorized potentiometer, setpoint, lower            |
| p0840 | ON/OFF1                                  | p1055 | Jog bit 0                                           |
| p0844 | OFF2                                     | p1056 | Jog bit 1                                           |
| p0848 | OFF3                                     | p1113 | Setpoint inversion                                  |
| p0852 | Enable operation                         | p1201 | Flying restart enable signal source                 |
| p0855 | Unconditionally release holding brake    | p2103 | 1st acknowledge faults                              |
| p0856 | Enable speed controller                  | p2106 | External fault 1                                    |
| p0858 | Unconditionally close holding brake      | p2112 | External alarm 1                                    |
| p1020 | Fixed speed setpoint selection bit 0     | p2200 | Technology controller enable                        |
| p1021 | Fixed speed setpoint selection bit 1     | p3330 | Two-wire/three-wire control, control com-<br>mand 1 |
| p1022 | Fixed speed setpoint selection bit 2     | p3331 | Two-wire/three-wire control, control com-<br>mand 2 |
| p1023 | Fixed speed setpoint selection bit 3     | p3332 | Two-wire/three-wire control, control com-<br>mand 3 |
| p1035 | Motorized potentiometer, setpoint, raise |       |                                                     |

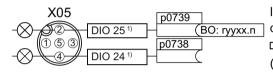
A complete list of the binector inputs is provided in the List Manual.

### Example



In order to switch on the motor with digital input DI 2, you have to connect the status parameter of DI 2 to p0840: Set p0840 = 722.2.

6.3 Adapt the default settings of the inputs and outputs


### Advanced settings

You can debounce the digital input signal using parameter p0724.

For more information, see the parameter list and the function block diagram 2220 of the List Manual.

### 6.3.3 Digital outputs

### Changing the function of the digital outputs



<sup>1)</sup> Parameterized as digital outputs

Binector outputs of the converter

Interconnect the digital output with a binector output of your choice.

[Lage 585] Interconnecting signals in the converter

Binector outputs are marked with "BO" in the parameter list of the List Manual.

|         | 1                                 | 1        |                                   |
|---------|-----------------------------------|----------|-----------------------------------|
| 0       | Deactivating digital output       | r0052.9  | Process data control              |
| r0052.0 | Drive ready                       | r0052.10 | f_actual >= p1082 (f_max)         |
| r0052.1 | Drive ready for operation         | r0052.11 | Alarm: Motor current/torque limit |
| r0052.2 | Drive running                     | r0052.12 | Brake active                      |
| r0052.3 | Drive fault active                | r0052.13 | Motor overload                    |
| r0052.4 | OFF2 active                       | r0052.14 | Motor CW rotation                 |
| r0052.5 | OFF3 active                       | r0052.15 | Converter overload                |
| r0052.6 | Switching on inhibited active     | r0053.0  | DC braking active                 |
| r0052.7 | Drive alarm active                | r0053.2  | f_actual > p1080 (f_min)          |
| r0052.8 | Setpoint/actual value discrepancy | r0053.6  | f_actual ≥ setpoint (f_setpoint)  |

A complete list of the binector outputs is provided in the List Manual.

### Example

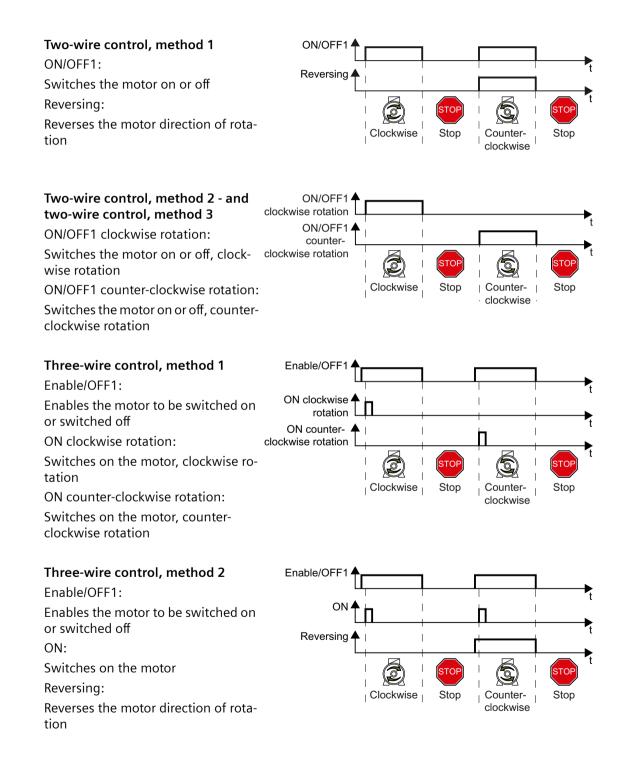


In order to output the fault message over the digital 52.3 (r0052.3) – output DI/DO 25, you have to connect the DI/DO 25 with the fault message: Set p0739 = 52.3.

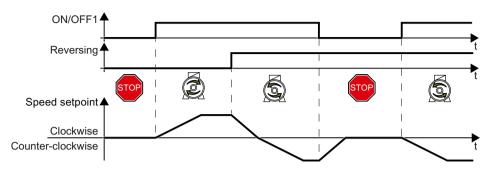
### Advanced settings

You can invert the signal of the digital output using parameter p0748.

For more information, see the parameter list and the function block diagram 2230 of the List Manual.


6.4 Controlling clockwise and counter-clockwise rotation via digital inputs

# 6.4 Controlling clockwise and counter-clockwise rotation via digital inputs




The converter offers different methods for controlling the motor using two or three commands.

### Overview

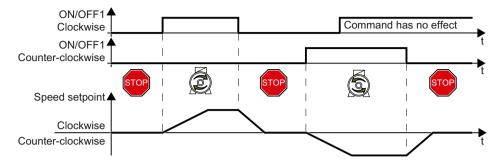


## 6.4.1 Two-wire control, method 1



Command "ON/OFF1" switches the motor on and off. The "Reversing" command inverts the motor direction of rotation.

| ON/OFF1 | Reversing | Function                             |
|---------|-----------|--------------------------------------|
| 0       | 0         | OFF1: The motor stops                |
| 0       | 1         |                                      |
| 1       | 0         | ON: Clockwise motor rotation         |
| 1       | 1         | ON: Counter-clockwise motor rotation |


## Parameters

#### Select two-wire control, method 1

| Parameter  | Description                                                             |  |
|------------|-------------------------------------------------------------------------|--|
| p0015 = 60 | Macro drive unit                                                        |  |
|            | You must carry out quick commissioning in order to set parameter p0015. |  |
|            | Assigning digital inputs DI to the commands:                            |  |
|            | DI 0: ON/OFF1                                                           |  |
|            | DI 1: Reversing                                                         |  |

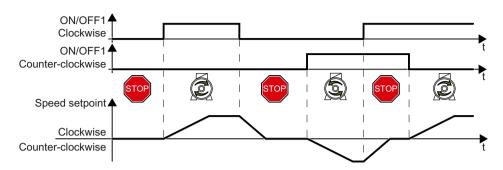
| Parameter   | Description                                        |
|-------------|----------------------------------------------------|
| p0840[0n] = | BI: ON/OFF1 (ON/OFF1)                              |
| 722.x       | Example: $p0840 = 722.3 \Rightarrow DI 3: ON/OFF1$ |
| p1113[0n] = | BI: Setpoint inversion (reversing)                 |
| 722.x       |                                                    |

## 6.4.2 Two-wire control, method 2



Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter only accepts a new command when the motor is at a standstill.

| ON/OFF1 clockwise rota-<br>tion | ON/OFF1 counter-clock-<br>wise rotation | Function                                                                                    |
|---------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------|
| 0                               | 0                                       | OFF1: The motor stops.                                                                      |
| 1                               | 0                                       | ON: Clockwise motor rotation.                                                               |
| 0                               | 1                                       | ON: Counter-clockwise motor rotation.                                                       |
| 1                               | 1                                       | ON: The motor direction of rotation is defined by the command that first reaches state "1". |


## Parameters

Select two-wire control, method 2

| Parameter  | Description                                                             |  |
|------------|-------------------------------------------------------------------------|--|
| p0015 = 61 | Macro drive unit                                                        |  |
|            | You must carry out quick commissioning in order to set parameter p0015. |  |
|            | Assigning digital inputs DI to the commands:                            |  |
|            | DI 0: ON/OFF1 clockwise rotation                                        |  |
|            | DI 1: ON/OFF1 counter-clockwise rotation                                |  |

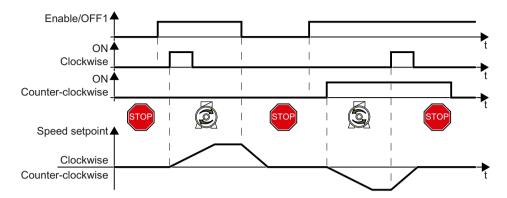
| Parameter             | Description                                                                   |
|-----------------------|-------------------------------------------------------------------------------|
| p3330[0 n] =<br>722.x | BI: 2/3 wire control command 1 (ON/OFF1 clockwise rotation)                   |
| p3331[0 n] =          | BI: 2/3 wire control command 2 (ON/OFF1 counter-clockwise rotation)           |
| 722.x                 | Example: p3331 = 722.0 $\Rightarrow$ DI 0: ON/OFF1 counter-clockwise rotation |

## 6.4.3 Two-wire control, method 3



Commands "ON/OFF1 clockwise rotation" and "ON/OFF1 counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. The converter accepts a new command at any time, independent of the motor speed.

| ON/OFF1 clockwise rota-<br>tion | ON/OFF1 counter-clock-<br>wise rotation | Function                              |
|---------------------------------|-----------------------------------------|---------------------------------------|
| 0                               | 0                                       | OFF1: The motor stops.                |
| 1                               | 0                                       | ON: Clockwise motor rotation.         |
| 0                               | 1                                       | ON: Counter-clockwise motor rotation. |
| 1                               | 1                                       | OFF1: The motor stops.                |


#### Parameters

#### Select two-wire control, method 3

| Parameter  | Description                                                             |  |
|------------|-------------------------------------------------------------------------|--|
| p0015 = 62 | Macro drive unit                                                        |  |
|            | You must carry out quick commissioning in order to set parameter p0015. |  |
|            | Assigning digital inputs DI to the commands:                            |  |
|            | DI 0: ON/OFF1 clockwise rotation                                        |  |
|            | DI 1: ON/OFF1 counter-clockwise rotation                                |  |

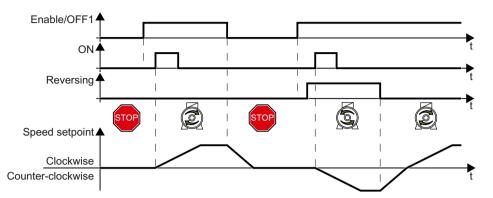
| Parameter             | Description                                                                   |
|-----------------------|-------------------------------------------------------------------------------|
| p3330[0 n] =<br>722.x | BI: 2/3 wire control command 1 (ON/OFF1 clockwise rotation)                   |
| p3331[0 n] =          | BI: 2/3 wire control command 2 (ON/OFF1 counter-clockwise rotation)           |
| 722.x                 | Example: $p3331 = 722.0 \Rightarrow DI 0: ON/OFF1$ counter-clockwise rotation |

## 6.4.4 Three-wire control, method 1



The "Enable" command is a precondition for switching on the motor. Commands "ON clockwise rotation" and "ON counter-clockwise rotation" switch on the motor - and simultaneously select a direction of rotation. Removing the enable switches the motor off (OFF1).

| Enable / OFF1 | ON clockwise ro-<br>tation | ON counter-clock-<br>wise rotation | Function                              |
|---------------|----------------------------|------------------------------------|---------------------------------------|
| 0             | 0 or 1                     | 0 or 1                             | OFF1: The motor stops.                |
| 1             | 0→1                        | 0                                  | ON: Clockwise motor rotation.         |
| 1             | 0                          | 0→1                                | ON: Counter-clockwise motor rotation. |
| 1             | 1                          | 1                                  | OFF1: The motor stops.                |


## Parameters

#### Select three-wire control, method 1

| Parameter  | Description                                                             |
|------------|-------------------------------------------------------------------------|
| p0015 = 63 | Macro drive unit                                                        |
|            | You must carry out quick commissioning in order to set parameter p0015. |
|            | Assigning digital inputs DI to the commands:                            |
|            | DI 0: Enable/OFF1                                                       |
|            | DI 1: ON counter-clockwise rotation                                     |
|            | DI 2: ON clockwise rotation                                             |

| Parameter             | Description                                                               |
|-----------------------|---------------------------------------------------------------------------|
| p3330[0 n] =<br>722.x | BI: 2/3 wire control command 1 (enable/OFF1)                              |
| p3331[0 n] =<br>722.x | BI: 2/3 wire control command 2 (ON clockwise rotation)                    |
| p3332[0 n] =          | BI: 2/3 wire control command 3 (ON counter-clockwise rotation)            |
| 722.x                 | Example: $p3332 = 722.0 \Rightarrow DI 0$ : ON counter-clockwise rotation |

## 6.4.5 Three-wire control, method 2



The "Enable" command is a precondition for switching on the motor. The "ON" command switches the motor on. The "Reversing" command inverts the motor direction of rotation. Removing the enable switches the motor off (OFF1).

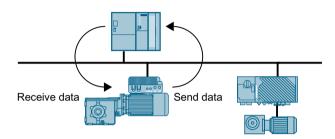
| Enable/OFF1 | ON     | Reversing | Function                              |
|-------------|--------|-----------|---------------------------------------|
| 0           | 0 or 1 | 0 or 1    | OFF1: The motor stops.                |
| 1           | 0→1    | 0         | ON: Clockwise motor rotation.         |
| 1           | 0→1    | 1         | ON: Counter-clockwise motor rotation. |

### Parameters

### Select three-wire control, method 2

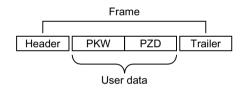
| Parameter  | Description                                                             |  |  |  |  |  |
|------------|-------------------------------------------------------------------------|--|--|--|--|--|
| p0015 = 64 | Macro drive unit                                                        |  |  |  |  |  |
|            | You must carry out quick commissioning in order to set parameter p0015. |  |  |  |  |  |
|            | Assigning digital inputs DI to the commands:                            |  |  |  |  |  |
|            | DI 0: Enable/OFF1                                                       |  |  |  |  |  |
|            | DI 1: ON                                                                |  |  |  |  |  |
|            | DI 2: Reversing                                                         |  |  |  |  |  |

| Parameter             | Description                                            |
|-----------------------|--------------------------------------------------------|
| p3330[0 n] =<br>722.x | BI: 2/3 wire control command 1 (enable/OFF1)           |
| p3331[0 n] =<br>722.x | BI: 2/3 wire control command 2 (ON)                    |
| 122.8                 | Example: $p3331 = 722.0 \Rightarrow DI 0$ : ON command |
| p3332[0 n] =<br>722.x | BI: 2/3 wire control command 3 (reversing)             |


## 6.5 Drive control via PROFINET

## 6.5.1 Receive data and send data

### Cyclic data exchange




The converter receives cyclic data from the higher-level control and returns cyclic data to the control.



Converter and control system pack their data in telegrams.

Every telegram for cyclic data exchange has the following basic structure:



- Header and trailer form the protocol frame.
- User data is located within the frame:
  - PKW: The control can read or change every parameter in the converter via "PKW data". Not every telegram has a "PKW range".
  - PZD: The converter receives control commands and setpoints from the higher-level control and sends status messages and actual values via "PZD data".

#### **PROFIdrive and telegram numbers**

For typical applications, certain telegrams are defined in the PROFIdrive profile and are assigned a fixed PROFIdrive telegram number. As a consequence, behind a PROFIdrive telegram number, there is a defined signal composition. As a consequence, a telegram number uniquely describes cyclic data exchange.

## 6.5.2 Telegrams

## Telegrams that are available

The user data of the telegrams that are available are described in the following.

Telegram 1



16-bit speed setpoint

#### Telegram 3

| PZD01 | PZD02 | PZD03 | PZD04 | PZD05      | PZD06    | PZD07 | PZD08 | PZD09 |
|-------|-------|-------|-------|------------|----------|-------|-------|-------|
| STW1  | NSO   | LL_B  | STW2  | G1_<br>STW |          |       |       |       |
| ZSW1  | NIS   | T_B   | ZSW2  | G1_<br>ZSW | G1_XIST1 |       | G1_X  | (IST2 |

32-bit speed setpoint with 1 position encoder

#### Telegram 20

| PZD01 | PZD02  | PZD03  | PZD04 | PZD05 | PZD06          |
|-------|--------|--------|-------|-------|----------------|
| STW1  | NSOLL_ |        |       |       |                |
| -     | A      |        | _     |       |                |
| ZSW1  | NIST_A | IAIST_ | MIST_ | PIST_ | MELD_<br>NAMUR |
| 23001 | GLATT  | GLATT  | GLATT | GLATT | NAMUR          |

16-bit speed setpoint for VIK-Namur

#### Telegram 350

| PZD01 | PZD02           | PZD03 | PZD04 |
|-------|-----------------|-------|-------|
| STW1  | NSOLL<br>_A     | M_LIM | STW3  |
| ZSW1  | NIST_A<br>GLATT |       | ZSW3  |

16-bit speed setpoint with torque limiting

#### Telegram 352

| PZD01 | PZD02       | PZD03             | PZD04 | PZD05 | PZD06  |  |
|-------|-------------|-------------------|-------|-------|--------|--|
| STW1  | NSOLL<br>_A | Freely assignable |       |       |        |  |
| ZSW1  | NIST_A      | IAIST_            | MIST_ | WARN_ | FAULT_ |  |
| 23001 | GLATT       | GLATT             | GLATT | CODE  | CODE   |  |

16-bit speed setpoint for PCS7

#### Telegram 353

| PZD01 | PZD02           |
|-------|-----------------|
| STW1  | NSOLL<br>_A     |
| ZSW1  | NIST_A<br>GLATT |

16-bit speed setpoint with reading and writing to parameters

#### Telegram 354

|  |      | PZD01           | PZD02       | PZD03             | PZD04 | PZD05          | PZD06 |  |
|--|------|-----------------|-------------|-------------------|-------|----------------|-------|--|
|  |      | STW1            | NSOLL<br>_A | Freely assignable |       |                |       |  |
|  | ZSW1 | NIST_A<br>GLATT |             | MIST_<br>GLATT    |       | FAULT_<br>CODE |       |  |

16-bit speed setpoint for PCS7 with reading and writing to parameters

#### Telegram 999

| PZD01 | PZD02   | PZD03    | PZD04       | PZD05     | PZD06  | PZD07 | PZD08 | PZD09 | PZD10 | PZD11 | PZD12 |
|-------|---------|----------|-------------|-----------|--------|-------|-------|-------|-------|-------|-------|
| STW1  | Telegra | m length | for the re  | ceive dat | l<br>a |       |       |       |       |       |       |
| ZSW1  | Telegra | m length | for the tra | ansmit da | ita    | 1     | 1     |       |       | 1     |       |

Unassigned interconnection and length

## Explanation of the abbreviations

| Abbreviation | Explanation                    | Abbreviation           | Explanation                                         |
|--------------|--------------------------------|------------------------|-----------------------------------------------------|
| PZD          | Process data                   | PKW                    | Parameter channel                                   |
| STW          | Control word                   | PIST_GLATT             | Actual active power value, smoothed                 |
| ZSW          | Status word                    | M_LIM                  | Torque limit                                        |
| NSOLL_A      | Speed setpoint 16 bit          | FAULT_CODE             | Fault code                                          |
| NSOLL_B      | Speed setpoint 32 bit          | WARN_CODE              | Alarm code                                          |
| NIST_A       | Speed actual value 16 bit      | MELD_NAMUR             | Message according to the VIK-NAMUR defini-<br>tion  |
| NIST_B       | Speed actual value 32 bit      | G1_STW /<br>G2_STW     | Control word for encoder 1 or encoder 2             |
| IAIST        | Current actual value           | G1_ZSW /<br>G2_ZSW     | Status word for encoder 1 or encoder 2              |
| IAIST_GLATT  | Current actual value, smoothed | G1_XIST1 /<br>G2_XIST1 | Position actual value 1 from encoder 1 or encoder 2 |
| MIST_GLATT   | Torque actual value, smoothed  | G1_XIST2 /<br>G2_XIST2 | Position actual value 2 from encoder 1 or encoder 2 |

## 6.5.3 Control and status word 1

## Control word 1 (STW1)

| Bit  | Significance                              |                                                                                 | Explanation                                                                                                                                | Signal inter-<br>connection |  |  |  |  |
|------|-------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
|      | Telegram 20                               | All other tele-<br>grams                                                        | er tele-                                                                                                                                   |                             |  |  |  |  |
| 0    | 0 = OFF1                                  |                                                                                 | The motor brakes with the ramp-down time<br>p1121 of the ramp-function generator. The con-<br>verter switches off the motor at standstill. | p0840[0] =<br>r2090.0       |  |  |  |  |
|      | $0 \rightarrow 1 = ON$                    |                                                                                 | The converter goes into the "ready" state. If, in addition bit $3 = 1$ , then the converter switches on the motor.                         |                             |  |  |  |  |
| 1    | 0 = OFF2                                  |                                                                                 | Switch off the motor immediately, the motor then coasts down to a standstill.                                                              | p0844[0] =<br>r2090.1       |  |  |  |  |
|      | 1 = No OFF2                               |                                                                                 | The motor can be switched on (ON command).                                                                                                 |                             |  |  |  |  |
| 2    | 0 = Quick stop (                          | OFF3)                                                                           | Quick stop: The motor brakes with the OFF3 ramp-down time p1135 down to standstill.                                                        | p0848[0] =<br>r2090.2       |  |  |  |  |
|      | 1 = No quick sto                          | •                                                                               | The motor can be switched on (ON command).                                                                                                 |                             |  |  |  |  |
| 3    | 0 = Inhibit opera                         | = Inhibit operation Immediately switch-off motor (cancel pulses).               |                                                                                                                                            | p0852[0] =                  |  |  |  |  |
|      | 1 = Enable oper                           | ation                                                                           | Switch-on motor (pulses can be enabled).                                                                                                   | r2090.3                     |  |  |  |  |
| 4    | 0 = Disable RFG<br>1 = Do not disable RFG |                                                                                 | The converter immediately sets its ramp-func-<br>tion generator output to 0.                                                               | p1140[0] =<br>r2090.4       |  |  |  |  |
|      |                                           |                                                                                 | The ramp-function generator can be enabled.                                                                                                |                             |  |  |  |  |
| 5    | 0 = Stop RFG                              |                                                                                 | = Stop RFG The output of the ramp-function generator stops at the actual value.                                                            |                             |  |  |  |  |
|      | 1 = Enable RFG                            | Enable RFG The output of the ramp-function generator fol-<br>lows the setpoint. |                                                                                                                                            |                             |  |  |  |  |
| 6    | 0 = Inhibit setpo                         | bint                                                                            | The converter brakes the motor with the ramp-<br>down time p1121 of the ramp-function gener-<br>ator.                                      | p1142[0] =<br>r2090.6       |  |  |  |  |
|      | 1 = Enable setpo                          | pint                                                                            | Motor accelerates with the ramp-up time p1120 to the setpoint.                                                                             |                             |  |  |  |  |
| 7    | $0 \rightarrow 1 = Acknowledge faults$    |                                                                                 | Acknowledge fault. If the ON command is still active, the converter switches to the "switching on inhibited" state.                        | p2103[0] =<br>r2090.7       |  |  |  |  |
| 8, 9 | Reserved                                  |                                                                                 |                                                                                                                                            |                             |  |  |  |  |
| 10   | 0 = No control v                          | ia PLC                                                                          | Converter ignores the process data from the fieldbus.                                                                                      | p0854[0] =<br>r2090.10      |  |  |  |  |
|      | 1 = Control via F                         | PLC                                                                             | Control via fieldbus, converter accepts the proc-<br>ess data from the fieldbus.                                                           |                             |  |  |  |  |
| 11   | 1 = Direction reversal                    |                                                                                 | Invert setpoint in the converter.                                                                                                          | p1113[0] =<br>r2090.11      |  |  |  |  |
| 12   | Not used                                  |                                                                                 |                                                                                                                                            |                             |  |  |  |  |
| 13   | 1)                                        | 1 = MOP up                                                                      | Increase the setpoint saved in the motorized po-<br>tentiometer.                                                                           | p1035[0] =<br>r2090.13      |  |  |  |  |

| Bit | Significance<br>Telegram 20 | All other tele-<br>grams | Explanation                                                                           | Signal inter-<br>connection<br>in the con-<br>verter |
|-----|-----------------------------|--------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|
| 14  | 1)                          | 1 = MOP down             | Reduce the setpoint saved in the motorized po-<br>tentiometer.                        | p1036[0] =<br>r2090.14                               |
| 15  | CDS bit 0                   | Reserved                 | Changes over between settings for different operation interfaces (command data sets). | p0810 =<br>r2090.15                                  |

<sup>1)</sup> If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

## Status word 1 (ZSW1)

| Bit | Significance                                        |                             | Remarks                                                                                                                                          | Signal inter-                        |  |
|-----|-----------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
|     | Telegram 20                                         | All other tele-<br>grams    |                                                                                                                                                  | connection<br>in the con-<br>verter  |  |
| 0   | 1 = Ready for sw                                    | itching on                  | Power supply switched on; electronics initial-<br>ized; pulses locked.                                                                           | p2080[0] =<br>r0899.0                |  |
| 1   | 1 = Ready                                           |                             | Motor is switched on (ON/OFF1 = 1), no fault is<br>active. With the command "Enable operation"<br>(STW1.3), the converter switches on the motor. | p2080[1] =<br>r0899.1                |  |
| 2   | 1 = Operation er                                    | abled                       | Motor follows setpoint. See control word 1, bit 3.                                                                                               | p2080[2] =<br>r0899.2                |  |
| 3   | 1 = Fault active                                    |                             | The converter has a fault. Acknowledge fault using STW1.7.                                                                                       | p2080[3] =<br>r2139.3                |  |
| 4   | 1 = OFF2 inactive                                   | 5                           | Coast down to standstill is not active.                                                                                                          | p2080[4] =<br>r0899.4                |  |
| 5   | 1 = OFF3 inactive                                   |                             | Quick stop is not active.                                                                                                                        | p2080[5] =<br>r0899.5                |  |
| 6   | 1 = Switching on inhibited active                   |                             | It is only possible to switch on the motor after an OFF1 followed by ON.                                                                         | p2080[6] =<br>r0899.6                |  |
| 7   | 1 = Alarm active                                    |                             | Motor remains switched on; no acknowledge-<br>ment is necessary.                                                                                 | p2080[7] =<br>r2139.7                |  |
| 8   | 1 = Speed deviation within the tol-<br>erance range |                             | Setpoint / actual value deviation within the tol-<br>erance range.                                                                               | p2080[8] =<br>r2197.7                |  |
| 9   | 1 = Master control requested                        |                             | The automation system is requested to accept the converter control.                                                                              | p2080[9] =<br>r0899.9                |  |
| 10  | 1 = Comparison speed reached or<br>exceeded         |                             | Speed is greater than or equal to the corre-<br>sponding maximum speed.                                                                          | p2080[10]<br>= r2199.1               |  |
| 11  | 1 = current or<br>torque limit<br>reached           | 1 = torque limit<br>reached | Comparison value for current or torque has been reached or exceeded.                                                                             | p2080[11]<br>= r0056.13 /<br>r1407.7 |  |
| 12  | 2 <sup>1)</sup> 1 = Holding<br>brake open           |                             | Signal to open and close a motor holding brake.                                                                                                  | p2080[12]<br>= r0899.12              |  |
| 13  | 3 0 = Alarm, motor overtemperature                  |                             |                                                                                                                                                  | p2080[13]<br>= r2135.14              |  |

| Bit | Bit Significance            |                                               | Remarks                             | Signal inter-                        |
|-----|-----------------------------|-----------------------------------------------|-------------------------------------|--------------------------------------|
|     | Telegram 20                 | All other tele-<br>grams                      |                                     | connection<br>in the con-<br>verter  |
| 14  | 1 = Motor rotates clockwise |                                               | Internal converter actual value > 0 | p2080[14]                            |
|     | 0 = Motor rotates<br>wise   | counter-clock-                                | Internal converter actual value < 0 | = r2197.3                            |
| 15  | 1 = CDS display             | 0 = Alarm, con-<br>verter thermal<br>overload |                                     | p2080[15]<br>= r0836.0 /<br>r2135.15 |

<sup>1)</sup> If you change over from another telegram to telegram 20, then the assignment of the previous telegram is kept.

## 6.5.4 Control and status word 3

## Control word 3 (STW3)

| Bit | Meaning                               | Explanation                                                                                 | Signal interconnec-                 |  |  |  |
|-----|---------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------|--|--|--|
|     | Telegram 350                          |                                                                                             | tion in the converter <sup>1)</sup> |  |  |  |
| 0   | 1 = fixed setpoint bit 0              | Selects up to 16 different fixed                                                            | p1020[0] = r2093.0                  |  |  |  |
| 1   | 1 = fixed setpoint bit 1              | setpoints.                                                                                  | p1021[0] = r2093.1                  |  |  |  |
| 2   | 1 = fixed setpoint bit 2              |                                                                                             | p1022[0] = r2093.2                  |  |  |  |
| 3   | 1 = fixed setpoint bit 3              |                                                                                             | p1023[0] = r2093.3                  |  |  |  |
| 4   | 1 = DDS selection bit 0               | Changes over between settings                                                               | p0820 = r2093.4                     |  |  |  |
| 5   | 1 = DDS selection bit 1               | for different motors (drive data sets).                                                     | p0821 = r2093.5                     |  |  |  |
| 6   | 6 Not used                            |                                                                                             |                                     |  |  |  |
| 7   | Not used                              |                                                                                             |                                     |  |  |  |
| 8   | 1 = technology controller enable      |                                                                                             | p2200[0] = r2093.8                  |  |  |  |
| 9   | 1 = enable DC braking                 |                                                                                             | p1230[0] = r2093.9                  |  |  |  |
| 10  | Not used                              |                                                                                             |                                     |  |  |  |
| 11  | 1 = Enable droop                      | Enable or inhibit speed control-<br>ler droop.                                              | p1492[0] = r2093.11                 |  |  |  |
| 12  | 1 = torque control active             | Changes over the control mode                                                               | p1501[0] = r2093.12                 |  |  |  |
|     | 0 = speed control active              | for vector control.                                                                         |                                     |  |  |  |
| 13  | 1 = no external fault                 |                                                                                             | p2106[0] = r2093.13                 |  |  |  |
|     | 0 = external fault is active (F07860) |                                                                                             |                                     |  |  |  |
| 14  | 4 Not used                            |                                                                                             |                                     |  |  |  |
| 15  | 1 = CDS bit 1                         | Changes over between settings<br>for different operation interfaces<br>(command data sets). | p0811[0] = r2093.15                 |  |  |  |

<sup>1)</sup> If you switch from telegram 350 to a different one, then the converter sets all interconnections p1020, ... to "0". Exception: p2106 = 1.

## Status word 3 (ZSW3)

| Bit | Meaning                                                | Description                                         | Signal intercon-<br>nection in the<br>converter |
|-----|--------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 0   | 1 = DC braking active                                  |                                                     | p2051[3] = r0053                                |
| 1   | 1 =  n_act   > p1226                                   | Absolute current speed > stationary state detection |                                                 |
| 2   | 1 =  n_act   > p1080                                   | Absolute actual speed > minimum speed               |                                                 |
| 3   | 1 = i_act ≧ p2170                                      | Actual current ≥ current threshold value            |                                                 |
| 4   | 1 =  n_act   > p2155                                   | Absolute actual speed > speed<br>threshold value 2  |                                                 |
| 5   | 1 =  n_act   ≦ p2155                                   | Absolute actual speed < speed<br>threshold value 2  |                                                 |
| 6   | 1 =  n_act   ≧ r1119                                   | Speed setpoint reached                              |                                                 |
| 7   | 1 = DC link voltage ≦ p2172                            | Actual DC link voltage ≦ threshold<br>value         |                                                 |
| 8   | 1 = DC link voltage > p2172                            | Actual DC link voltage > threshold value            |                                                 |
| 9   | 1 = ramp-up or ramp-down completed                     | Ramp-function generator is not ac-<br>tive.         |                                                 |
| 10  | 1 = technology controller output at<br>the lower limit | Technology controller output ≦<br>p2292             |                                                 |
| 11  | 1 = technology controller output at<br>the upper limit | Technology controller out-<br>put > p2291           |                                                 |
| 12  | Not used                                               |                                                     |                                                 |
| 13  | Not used                                               |                                                     |                                                 |
| 14  | Not used                                               |                                                     |                                                 |
| 15  | Not used                                               |                                                     |                                                 |

## 6.5.5 Control and status word G115D

## Control word G115D (STW\_G115D)

| Bit | Meaning                          | Description                                                                           | Signal interconnec-<br>tion in the converter |
|-----|----------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------|
| 0   | 1 = DO 24                        | Control via bidirectional DIO 24                                                      | p0738 = r2094.0                              |
| 1   | 1 = DO 25                        | Control via bidirectional DIO 25                                                      | p0739 = r2094.1                              |
| 2   | 1 = Stop/low speed sensor bypass | Activate or deactivate the stop/<br>low speed sensor bypass for con-<br>veyor control | p3390 = r2094.2                              |
| 6   | Not used                         |                                                                                       |                                              |
| 15  |                                  |                                                                                       |                                              |

## Status word G115D (ZSW\_G115D)

| Bit | Meaning Description             |                                                                          | Signal interconnec-<br>tion in the converter |
|-----|---------------------------------|--------------------------------------------------------------------------|----------------------------------------------|
| 0   | 1 = DI 0                        | Status of the digital input 0                                            | p2084[0] = r0722.0                           |
| 1   | 1 = DI 1                        | Status of the digital input 1                                            | p2084[1] = r0722.1                           |
| 2   | 1 = DI 2                        | Status of the digital input 2                                            | p2084[2] = r0722.2                           |
| 3   | 1 = DI 3                        | Status of the digital input 3                                            | p2084[3] = r0722.3                           |
| 4   | 1 = DI 24                       | Status of the digital input 24                                           | p2084[4] = r0722.24                          |
| 5   | 1 = DI 25                       | Status of the digital input 25                                           | p2084[5] = r0722.25                          |
| 6   | Not used                        |                                                                          |                                              |
| 7   | Not used                        |                                                                          |                                              |
| 8   | 1 = Repair switch OFF           | Repair switch is set to OFF and all power to the motor is termina-ted.   | p2084[8] = r8559.12                          |
| 9   | 1 = Remote control active       | Remote control mode is activa-<br>ted via the LRC panel.                 | p2084[9] = r8559.2                           |
| 10  | 1 = Manual mode active          | Local control mode is activated via the LRC panel.                       | p2084[10] = r8559.3                          |
| 11  | 1 = Sensor bypass activated     | Stop/low speed sensor bypass is activated for the conveyor con-<br>trol. | p2084[11] = r8559.4                          |
| 12  | 1 = Continuous motion activated | Continuous motion is activated via the LRC panel.                        | p2084[12] = r8559.5                          |
| 13  | 1 = Jog left active             | Motor Jogs to the left.                                                  | p2084[13] = r8559.6                          |
| 14  | 1 = Jog right active            | Motor Jogs to the right.                                                 | p2084[14] = r8559.7                          |
| 15  | Not used                        |                                                                          |                                              |

## 6.5.6 NAMUR message word

## Fault word according to the VIK-NAMUR definition (MELD\_NAMUR)

| Bit | Significance                                                    | P no.            |
|-----|-----------------------------------------------------------------|------------------|
| 0   | 1 = converter signals a fault                                   | p2051[5] = r3113 |
| 1   | 1 = line fault: phase failure or inadmissible voltage           |                  |
| 2   | 1 = DC link overvoltage                                         |                  |
| 3   | 1 = power unit fault, e.g. overcurrent or overtemperature       |                  |
| 4   | 1 = converter overtemperature                                   |                  |
| 5   | 1 = ground fault/phase fault in the motor cable or in the motor |                  |
| 6   | 1 = motor overload                                              |                  |
| 7   | 1 = communication error to the higher-level control system      |                  |
| 8   | 1 = fault in a safety-relevant monitoring channel               |                  |
| 10  | 1 = fault in the internal converter communication               |                  |
| 11  | 1 = line fault                                                  |                  |
| 15  | 1 = other fault                                                 |                  |

## 6.5.7 Parameter channel

### Structure of the parameter channel

The parameter channel consists of four words. The 1st and 2nd words transfer the parameter number, index and the type of task (read or write). The 3rd and 4th words contain the parameter content. The parameter contents can be 16-bit values (such as baud rate) or 32-bit values (e.g. CO parameters).

Bit 11 in the 1st word is reserved and is always assigned 0.

| Parameter channel                                     |      |          |            |               |       |
|-------------------------------------------------------|------|----------|------------|---------------|-------|
| PKE (1st word) IND (2nd word) PWE (3rd and 4th words) |      |          |            | nd 4th words) |       |
| 1512 11                                               | 10 0 | 15 8     | 7 0        | 15 0          | 15 0  |
| AK S                                                  | PNU  | Subindex | Page index | PWE 1         | PWE 2 |
| P                                                     |      |          |            |               |       |
| М                                                     |      |          |            |               |       |

You can find application examples relating to the parameter channel at the end of this section.

## **AK: Request and response IDs**

Bits 12 ... 15 of the 1st parameter channel word contain the request and response identifier AK.

| Request ID, control | → converter |
|---------------------|-------------|
|---------------------|-------------|

| AK              | Description                                               | Respo    | Response ID   |  |
|-----------------|-----------------------------------------------------------|----------|---------------|--|
|                 |                                                           | positive | nega-<br>tive |  |
| 0               | No request                                                | 0        | 7/8           |  |
| 1               | Request parameter value                                   | 1/2      | 7/8           |  |
| 2               | Change parameter value (word)                             | 1        | 7/8           |  |
| 3               | Change parameter value (double word)                      | 2        | 7/8           |  |
| 4               | Request descriptive element 1)                            | 3        | 7/8           |  |
| 6 <sup>2)</sup> | Request parameter value (field) 1)                        | 4/5      | 7/8           |  |
| 7 <sup>2)</sup> | Change parameter value (field, word) 1)                   | 4        | 7/8           |  |
| 8 <sup>2)</sup> | Change parameter value (field, double word) <sup>1)</sup> | 5        | 7/8           |  |
| 9               | Request number of field elements                          | 6        | 7/8           |  |

<sup>1)</sup> The required element of the parameter is specified in IND (2nd word).

<sup>2)</sup> The following request IDs are identical:  $1 \equiv 6, 2 \equiv 7, 3 \equiv 8$ . We recommend that you use identifiers 6, 7, and 8.

#### Response ID, converter $\rightarrow$ control

| AK | Description                                                                                                                                                                          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0  | No response                                                                                                                                                                          |
| 1  | Transfer parameter value (word)                                                                                                                                                      |
| 2  | Transfer parameter value (double word)                                                                                                                                               |
| 3  | Transfer descriptive element <sup>1)</sup>                                                                                                                                           |
| 4  | Transfer parameter value (field, word) 2)                                                                                                                                            |
| 5  | Transfer parameter value (field, double word) <sup>2)</sup>                                                                                                                          |
| 6  | Transfer number of field elements                                                                                                                                                    |
| 7  | Converter cannot process the request.<br>In the most significant word of the parameter channel, the converter sends an error number to<br>the control, refer to the following table. |
| 8  | No master controller status / no authorization to change parameters of the parameter channel interface                                                                               |

<sup>1)</sup> The required element of the parameter is specified in IND (2nd word).

<sup>2)</sup> The required element of the indexed parameter is specified in IND (2nd word).

## Error numbers for response ID 7

| No.    | Description                                                                                                 |
|--------|-------------------------------------------------------------------------------------------------------------|
| 00 hex | Illegal parameter number (access to a parameter that does not exist)                                        |
| 01 hex | <b>Parameter value cannot be changed</b> (change request for a parameter value that cannot be changed)      |
| 02 hex | Lower or upper value limit exceeded (change request with a value outside the value limits)                  |
| 03 hex | Incorrect subindex (access to a subindex that does not exist)                                               |
| 04 hex | No array (access with a subindex to non-indexed parameters)                                                 |
| 05 hex | <b>Incorrect data type</b> (change request with a value that does not match the data type of the parameter) |

| No.                                                                                                                                                                                      | Description                                                                                                                                                                   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 06 hex                                                                                                                                                                                   | Setting not permitted, only resetting (change request with a value not equal to 0 without permission)                                                                         |  |  |  |
| 07 hex                                                                                                                                                                                   | <b>Descriptive element cannot be changed</b> (change request to a descriptive element error value that cannot be changed)                                                     |  |  |  |
| 0B hex                                                                                                                                                                                   | No master control (change request but with no master control, see also p0927.)                                                                                                |  |  |  |
| 0C hex                                                                                                                                                                                   | Keyword missing                                                                                                                                                               |  |  |  |
| 11 hex                                                                                                                                                                                   | <b>Request cannot be executed due to the operating state</b> (access is not possible for temporary reasons that are not specified)                                            |  |  |  |
| 14 hex <b>Inadmissible value</b> (change request with a value that is within the limits but which is iller for other permanent reasons, i.e. a parameter with defined individual values) |                                                                                                                                                                               |  |  |  |
| 65 hex                                                                                                                                                                                   | ex <b>Parameter number is currently deactivated</b> (depending on the mode of the converter)                                                                                  |  |  |  |
| 66 hex                                                                                                                                                                                   | ex Channel width is insufficient (communication channel is too small for response)                                                                                            |  |  |  |
| 68 hex                                                                                                                                                                                   | Illegal parameter value (parameter can only assume certain values)                                                                                                            |  |  |  |
| 6A hex                                                                                                                                                                                   | hex Request not included / task is not supported (the valid request identifications can be four in table "Request identifications controller → converter")                    |  |  |  |
| 6B hex                                                                                                                                                                                   |                                                                                                                                                                               |  |  |  |
| 86 hex                                                                                                                                                                                   | Write access only for commissioning (p0010 = 15) (operating state of the converter prevents a parameter change)                                                               |  |  |  |
| 87 hex                                                                                                                                                                                   | 7 hex Know-how protection active, access locked                                                                                                                               |  |  |  |
| C8 hex                                                                                                                                                                                   | B hex Change request below the currently valid limit (change request to a value that lies within the "absolute" limits, but is however below the currently valid lower limit) |  |  |  |
| C9 hex                                                                                                                                                                                   | Change request above the currently valid limit (example: a parameter value is too large for the converter power)                                                              |  |  |  |
| CC hex                                                                                                                                                                                   | Change request not permitted (change is not permitted as the access code is not available)                                                                                    |  |  |  |

### PNU (parameter number) and page index

The parameter number is located in value PNU in the 1st word of the parameter channel (PKE). The page index is located in the 2nd word of the parameter channel (IND bit 7 ... 0).

| Parameter number | PNU       | Page index |
|------------------|-----------|------------|
| 0000 1999        | 0000 1999 | 0 hex      |
| 2000 3999        | 0000 1999 | 80 hex     |
| 6000 7999        | 0000 1999 | 90 hex     |
| 8000 9999        | 0000 1999 | 20 hex     |
| 10000 11999      | 0000 1999 | A0 hex     |
| 20000 21999      | 0000 1999 | 50 hex     |
| 30000 31999      | 0000 1999 | F0 hex     |
| 60000 61999      | 0000 1999 | 74 hex     |

## Subindex

For indexed parameters, the parameter index is located in subindex (IND Bit 15 ... 8) as hexadecimal value.

## PWE: Parameter value or connector

Parameter values or connectors can be located in the PWE.

|                 | PWE 1                          |                  | PWE 2                                                  |  |
|-----------------|--------------------------------|------------------|--------------------------------------------------------|--|
| Parameter value | Bit 15 0                       | Bit 15 8 Bit 7 0 |                                                        |  |
|                 | 0                              | 0                | 8-bit value                                            |  |
|                 | 0                              | 16-bit value     |                                                        |  |
|                 | 32-bit                         | 32-bit value     |                                                        |  |
| Connector       | Connector Bit 15 0 Bit 15 10 B |                  | Bit 9 0                                                |  |
|                 | Number of the connector        | 3F hex           | The index or bit field<br>number of the connec-<br>tor |  |

## Example

#### Read request: read out serial number of the Power Module (p7841[2])

To obtain the value of the indexed parameter p7841, you must fill the telegram of the parameter channel with the following data:

- PKE, Bit 12 ... 15 (AK): = 6 (request parameter value (field))
- PKE, Bit 0 ... 10 (PNU): = 1841 (parameter number without offset) Parameter number = PNU + offset (page index) (7841 = 1841 + 6000)
- IND, bit 8 ... 15 (subindex): = 2 (index of parameter)
- IND, bit 0 ... 7 (page index): = 90 hex (offset 6000 corresponds to 90 hex)
- Because you want to read the parameter value, words 3 and 4 in the parameter channel for requesting the parameter value are irrelevant. They should be assigned a value of 0, for example.

|               | Parameter channel |                  |          |                       |                     |                 |             |
|---------------|-------------------|------------------|----------|-----------------------|---------------------|-----------------|-------------|
| PKE, 1st word |                   | IND, 2r          | nd word  | PWE1 - high, 3rd word | PWE2                | - low, 4th word |             |
| 1512          | 11                | 10 0             | 15 8     | 7 0                   | 15 0                | 15 10           | 9 0         |
| AK            |                   | Parameter number | Subindex | Page index            | Parameter value     | Drive object    | Index       |
| 0110          | 0 (               | 11100110001      | 0000010  | 1001000               | 0000000000000000000 | 000000          | 00000000000 |

#### Write request: change restart mode (p1210)

The restart mode is inhibited in the factory setting (p1210 = 0). In order to activate the automatic restart with "acknowledge all faults and restart for an ON command", p1210 must be set to 26:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 4BA hex (1210 = 4BA hex, no offset, as 1210 < 1999)
- IND, bit 8 ... 15 (subindex): = 0 hex (parameter is not indexed)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)

- PWE1, bit 0 ... 15: = 0 hex
- PWE2, Bit 0 ... 15: = 1A hex (26 = 1A hex)

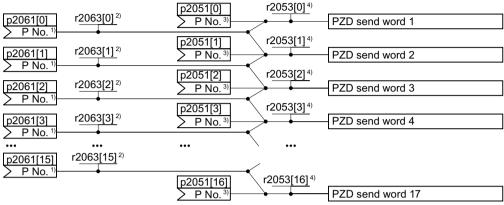
|               | Parameter channel |                  |          |            |                             |                            |  |  |
|---------------|-------------------|------------------|----------|------------|-----------------------------|----------------------------|--|--|
| PKE, 1st word |                   |                  | IND, 2r  | nd word    | PWE1 - high, 3rd word       | PWE2 - low, 4th word       |  |  |
| 1512          | 11                | 10 0             | 15 8     | 7 0        | 15 0                        | 15 0                       |  |  |
| AK            |                   | Parameter number | Subindex | Page index | Parameter value (bit 16 31) | Parameter value (bit 0 15) |  |  |
| 0111          | 0                 | 10010101010      | 00000000 | 00000000   | 000000000000000000          | 0000000000011010           |  |  |

## Write request: assign digital input 2 with the function ON/OFF1 (p0840[1] = 722.2)

In order to link digital input 2 with ON/OFF1, you must assign parameter p0840[1] (source, ON/ OFF1) the value 722.2 (DI 2). To do this, you must populate the telegram of the parameter channel as follows:

- PKE, bit 12 ... 15 (AK): = 7 (change parameter value (field, word))
- PKE, bit 0 ... 10 (PNU): = 348 hex (840 = 348 hex, no offset, as 840 < 1999)
- IND, bit 8 ... 15 (subindex): = 1 hex (CDS1 = Index 1)
- IND, bit 0 ... 7 (page index): = 0 hex (offset 0 corresponds to 0 hex)
- PWE1, Bit 0 ... 15: = 2D2 hex (722 = 2D2 hex)
- PWE2, Bit 10 ... 15: = 3F hex (drive object 63 = 3F hex)
- PWE2, Bit 0 ... 9: = 2 hex (Index of Parameter (DI 2 = 2))

|                             | Parameter channel |                                                                   |          |                 |                    |              |           |
|-----------------------------|-------------------|-------------------------------------------------------------------|----------|-----------------|--------------------|--------------|-----------|
| PKE, 1st word IND, 2nd word |                   | PKE, 1st word IND, 2nd word PWE1 - high, 3rd word PWE2 - low, 4th |          | - low, 4th word |                    |              |           |
| 1512                        | 11                | 10 0                                                              | 15 8     | 7 0             | 15 0               | 15 10        | 9 0       |
| AK                          |                   | Parameter number                                                  | Subindex | Page index      | Parameter value    | Drive Object | Index     |
| 0111                        | 0                 | 0 1 1 0 1 0 0 1 0 0 0                                             | 0000001  | 00000000        | 000000101010010010 | 1 1 1 1 1 1  | 000000010 |


## 6.5.8 Expanding or freely interconnecting telegrams

#### Overview

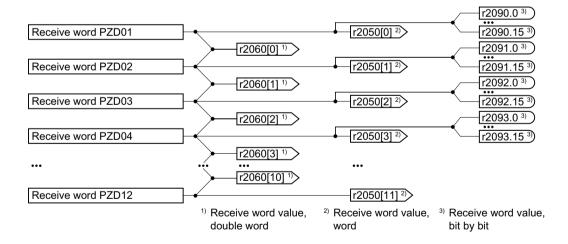
When you have selected a telegram, the converter interconnects the corresponding signals with the fieldbus interface. Generally, these interconnections are locked so that they cannot be changed. However, with the appropriate setting in the converter, the telegram can be extended or even freely interconnected.

## **Function description**

### Interconnection of the send data



<sup>1)</sup> Send word parameter number, doubleword


<sup>2)</sup> Send word value, doubleword

<sup>3)</sup> Send word parameter number, word

4) Send word value, word

In the converter, the send data are available in the "Word" format (p2051) - and in the "Double word" format (p2061). If you set a specific telegram, or you change the telegram, then the converter automatically interconnects parameters p2051 and p2061 with the appropriate signals.

#### Interconnection of the receive data



The converter saves the receive data as follows:

- "Word" format in r2050
- "Double word" format in r2060
- Bit-by-bit in r2090 ... r2093)

### Expanding the telegram

- 1. Set p0922 = 999.
- 2. Set parameter p2079 to the value of the corresponding telegram.
- 3. Interconnect additional PZD send words and PZD receive words with signals of your choice via parameters r2050 and p2051.

You have extended the telegram.

### Freely interconnecting signals in the telegram

- 1. Set p0922 = 999.
- 2. Set p2079 = 999.
- 3. Interconnect additional PZD send words and PZD receive words with signals of your choice via parameters r2050 and p2051.

You have freely interconnected the signals transferred in the telegram.  $\hfill\square$ 

## Example

Expand telegram 1 to 6 send words and 6 receive words.

#### Procedure

- 1. p0922 = 999
- 2. p2079 = 1
- 3. p2051[2] = r2050[2]
- 4. ...
- 5. p2051[5] = r2050[5]
- 6. Check the telegram length for the received and sent words:
  - r2067[0] = 6
  - r2067[1] = 6

You have expanded telegram 1 to 6 send words and 6 receive words.

## 6.5.9 Acyclically reading and writing converter parameters

#### Overview

The converter supports the writing and reading of parameters via acyclic communication:

• For PROFINET: Write or read requests via B02E hex and B02F hex

Further information about acyclic communication is provided in the Fieldbus Function Manual.

Overview of the manuals (Page 592)

## Application example, "Read and write to parameters"

Further information is provided on the Internet:

Application examples (<u>https://support.industry.siemens.com/cs/ww/en/view/29157692</u>)

## 6.6 Drive control via Ethernet/IP

## 6.6.1 Configuring communication via Ethernet/IP

### Overview

Ethernet/IP is real-time Ethernet, and is mainly used in automation technology.

## **Function description**

To configure the converter's communication via Ethernet/IP, you must set the following parameters:

#### Procedure

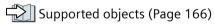
- 1. p2030 = 10
- 2. The following parameters must match your Ethernet configuration:
  - p8921 = IP address
  - p8922 = default gateway
  - p8923 = subnet mask
  - p8920 = station name
- 3. p8925 = 2
- 4. Select the Ethernet/IP profile:

| SINAMICS profile                                   | ODVA AC/DC drive profile                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p8980 = 0                                          | p8980 = 1                                                                                                                                                                                                                                                                                                                             |
| Use p0922 to select the appro-<br>priate telegram. | <ul> <li>p0922 = 1: The converter communicates via telegram 1. Other telegrams are not possible. If necessary, however, you can extend the telegram 1.</li> <li>Expanding or freely interconnecting telegrams (Page 160)</li> <li>If necessary, set the following parameters:</li> <li>p8981</li> <li>p8982</li> <li>p8983</li> </ul> |

- 5. Switch off the converter power supply.
- 6. Wait until all LEDs on the converter are dark.
- 7. Switch on the converter power supply again.
- You have now configured the converter for communication via Ethernet/IP.

## Parameters

| Parameter | Description                         | Setting                                                                   |  |  |
|-----------|-------------------------------------|---------------------------------------------------------------------------|--|--|
| p2030     | Fieldbus interface protocol selec-  | 0: No protocol                                                            |  |  |
|           | tion                                | 7: PROFINET                                                               |  |  |
|           |                                     | 10: Ethernet/IP                                                           |  |  |
|           |                                     | The default setting is dependent upon the convert-<br>er.                 |  |  |
| p8920     | PN Name of Station                  | Sets the station name for the onboard PROFINET interface.                 |  |  |
| p8921     | PN IP Address                       | Sets the IP address for the onboard PROFINET inter-<br>face.              |  |  |
|           |                                     | Factory setting: 0                                                        |  |  |
| p8922     | PN Default Gateway                  | Sets the default gateway for the onboard PROFINET interface.              |  |  |
|           |                                     | Factory setting: 0                                                        |  |  |
| p8923     | PN Subnet Mask                      | Sets the subnet mask for the onboard PROFINET interface.                  |  |  |
|           |                                     | Factory setting: 0                                                        |  |  |
| p8925     | Activate PN interface configuration | Setting to activate the interface configuration                           |  |  |
|           |                                     | 0: No function (factory setting)                                          |  |  |
|           |                                     | 2: Activate and save configuration                                        |  |  |
|           |                                     | 3: Delete configuration                                                   |  |  |
| r8931     | PN IP Address actual                | Displays the actual IP address.                                           |  |  |
| r8932     | PN Default Gateway actual           | Displays the actual default gateway.                                      |  |  |
| r8933     | PN Subnet Mask actual               | Displays the actual subnet mask.                                          |  |  |
| p8980     | Ethernet/IP profile                 | Sets the profile for Ethernet/IP.                                         |  |  |
|           |                                     | 0: SINAMICS                                                               |  |  |
|           |                                     | 1: ODVA AC/DC                                                             |  |  |
| p8981     | Ethernet/IP ODVA STOP mode          | Sets the STOP mode for the Ethernet/IP ODVA pro-<br>file ( $p8980 = 1$ ). |  |  |
|           |                                     | 0: OFF1 (factory setting)                                                 |  |  |
|           |                                     | 1: OFF2                                                                   |  |  |


| Parameter | Description                     | Setting                                                                   |
|-----------|---------------------------------|---------------------------------------------------------------------------|
| p8982     | Ethernet/IP ODVA speed scaling  | Sets the scaling for the speed for Ethernet/IP ODVA profile (p8980 = 1).  |
|           |                                 | 123: Scaling = 32                                                         |
|           |                                 | 124: Scaling = 16                                                         |
|           |                                 | 125: Scaling = 8                                                          |
|           |                                 | 126: Scaling = 4                                                          |
|           |                                 | 127: Scaling = 2                                                          |
|           |                                 | 128: Scaling = 1 (factory setting)                                        |
|           |                                 | 129: Scaling = 0.5                                                        |
|           |                                 | 130: Scaling = 0.25                                                       |
|           |                                 | 131: Scaling = 0.125                                                      |
|           |                                 | 132: Scaling = 0.0625                                                     |
|           |                                 | 133: Scaling = 0.03125                                                    |
| p8983     | Ethernet/IP ODVA torque scaling | Sets the scaling for the torque for Ethernet/IP ODVA profile (p8980 = 1). |
|           |                                 | 123: Scaling = 32                                                         |
|           |                                 | 124: Scaling = 16                                                         |
|           |                                 | 125: Scaling = 8                                                          |
|           |                                 | 126: Scaling = 4                                                          |
|           |                                 | 127: Scaling = 2                                                          |
|           |                                 | 128: Scaling = 1 (factory setting)                                        |
|           |                                 | 129: Scaling = 0.5                                                        |
|           |                                 | 130: Scaling = 0.25                                                       |
|           |                                 | 131: Scaling = 0.125                                                      |
|           |                                 | 132: Scaling = 0.0625                                                     |
|           |                                 | 133: Scaling = 0.03125                                                    |

For more information about the parameters, refer to the List Manual.

Cverview of the manuals (Page 592)

## **Further information**

Ethernet/IP objects and assemblies of the converter:



## 6.6.2 Supported objects

## Overview

| Object c | ass  | Object name                               | Objects re- | ODVA objects | SINAMICS ob- |
|----------|------|-------------------------------------------|-------------|--------------|--------------|
| hex      | dec  | _                                         | quired      |              | jects        |
| 1 hex    | 1    | Identity object                           | x           |              |              |
| 4 hex    | 4    | Assembly Object                           | x           |              |              |
| 6 hex    | 6    | Connection Manager Object                 | x           |              |              |
| 28 hex   | 40   | Motor Data Object                         |             | x            |              |
| 29 hex   | 41   | Supervisor Object                         |             | x            |              |
| 2A hex   | 42   | Drive Object                              |             | x            |              |
| 32C hex  | 812  | Siemens Drive Object                      |             |              | x            |
| 32D hex  | 813  | Siemens Motor Data Object                 |             |              | x            |
| F5 hex   | 245  | TCP/IP Interface Object <sup>1)</sup> x   |             |              |              |
| F6 hex   | 246  | Ethernet Link Object <sup>1)</sup> x      |             |              |              |
| 300 hex  | 768  | Stack Diagnostic Object x                 |             | x            |              |
| 302 hex  | 770  | Adapter Diagnostic Object x               |             | x            |              |
| 303 hex  | 771  | Explicit Messages Diagnostic Object x     |             | x            |              |
| 304 hex  | 772  | Explicit Message Diagnostic List Object x |             | x            | x            |
| 401 hex  | 1025 | Parameter object                          |             | x            | x            |

<sup>1)</sup> These objects are part of the Ethernet/IP system management.

## Identity Object, Instance Number: 1 hex

## **Supported services**

- Class
- Get Attribute allGet Attribute single
- Instance Get Attribute all
  - Get Attribute single
  - Reset

## **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

## **Instance Attribute**

| No. | Service | Туре   | Name                                              | Value/explanation |
|-----|---------|--------|---------------------------------------------------|-------------------|
| 1   | get     | UINT16 | Vendor ID                                         | 1251              |
| 2   | get     | UINT16 | Device Type<br>- ODVA AC Drive<br>- Siemens Drive | 02 hex<br>12 hex  |
| 3   | get     | UINT16 | Product code                                      | r0964[1]          |

| No. | Service | Туре            | Name          | Value/explanation                                                                                                                                                        |
|-----|---------|-----------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4   | get     | UINT16          | Revision      | The versions should match the EDS file                                                                                                                                   |
| 5   | get     | UINT16          | Status        | See the following table                                                                                                                                                  |
| 6   | get     | UINT32          | Serial number | bits 0 19: consecutive number;<br>bits 20 23: Production identifier<br>bits 24 27: Month of manufacture (0 = Jan, B = Dec)<br>Bits 28 31: Year of manufacture (0 = 2002) |
| 7   | get     | Short<br>String | Product name  | Max. length 32 bytes                                                                                                                                                     |

Explanation of No. 5 of the previous table

| Byte | Bit   | Name                      | Description                                                                                                                                                                                                                                                                                                                                                                       |
|------|-------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 0     | Owned                     | <ol> <li>Converter is not assigned to any master</li> <li>Converter is assigned to a master</li> </ol>                                                                                                                                                                                                                                                                            |
|      | 1     |                           | Reserved                                                                                                                                                                                                                                                                                                                                                                          |
|      | 2     | Configured                | 0: Ethernet/IP basic settings<br>1: Modified Ethernet/IP settings                                                                                                                                                                                                                                                                                                                 |
|      |       |                           | For G120, always = 1                                                                                                                                                                                                                                                                                                                                                              |
|      | 3     |                           | Reserved                                                                                                                                                                                                                                                                                                                                                                          |
|      | 4 7   | Extended Device<br>Status | <ul> <li>0: Self-test or status not known</li> <li>1: Firmware update active</li> <li>2: At least one I/O connection with error</li> <li>3: No I/O connections</li> <li>4: Incorrect configuration in the ROM</li> <li>5: Fatal fault</li> <li>6: At least one I/O connection is active</li> <li>7: All I/O connections in the quiescent state</li> <li>8 15: Reserved</li> </ul> |
| 2    | 8 11  |                           | Not used                                                                                                                                                                                                                                                                                                                                                                          |
|      | 12 15 |                           | Reserved                                                                                                                                                                                                                                                                                                                                                                          |

## Assembly Object, Instance Number: 4 hex

## Supported services

Class • Get Attribute single

Instance • Get Attribute single

• Set Attribute single

## **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

#### **Instance Attribute**

| Ν | lo. | Service | Туре           | Name     | Value/explanation                                             |
|---|-----|---------|----------------|----------|---------------------------------------------------------------|
|   | 3   | set     | Array of UINT8 | Assembly | 1 byte array<br>Supported ODVA AC/DC assemblies<br>(Page 177) |

## Connection Manager Object, Instance Number: 6 hex

## Supported services

Class

- Get Attribute allGet Attribute single
- Instance Forward open
  - Forward close
  - Get Attribute single
  - Set Attribute single

### **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

## **Instance Attribute**

| No. | Service | Туре   | Name                 | Value/explanation    |
|-----|---------|--------|----------------------|----------------------|
| 1   | get     | UINT16 | OpenReqs             | Counters             |
| 2   | get     | UINT16 | OpenFormat Rejects   | Counters             |
| 3   | get     | UINT16 | OpenResource Rejects | Counters             |
| 4   | get     | UINT16 | OpenOther Rejects    | Counters             |
| 5   | get     | UINT16 | CloseReqs            | Counters             |
| 6   | get     | UINT16 | CloseFormat Rejects  | Counters             |
| 7   | get     | UINT16 | CloseOther Rejects   | Counters             |
| 8   | get     | UINT16 | ConnTimeouts         | Counters             |
|     |         |        |                      | Number of bus errors |

## Motor Data Object, Instance Number 28 hex

## Supported services

Class • Get Attribute single

- Instance Get Attribute single
  - Set Attribute single

## **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

#### **Instance Attribute**

| No. | Service  | Туре   | Name              | Value/explanation                         |
|-----|----------|--------|-------------------|-------------------------------------------|
| 3   | get, set | USINT  | Motor Type        | p0300 motor type, see the following table |
| 6   | get, set | UINT16 | Rated Current     | p0305 rated motor current                 |
| 7   | get, set | UINT16 | Rated Voltage     | p0304 rated motor voltage                 |
| 8   | get, set | UINT32 | Rated Power       | p0307 rated motor power                   |
| 9   | get, set | UINT16 | Rated Frequency   | p0310 rated motor frequency               |
| 10  | get, set | UINT16 | Rated Temperature | p0605 motor temperature threshold         |
| 11  | get, set | UINT16 | Max Speed         | p0322 maximum motor speed                 |
| 12  | get, set | UINT16 | Pole Count        | p0314 value of p0314*2                    |
| 13  | get      | UINT32 | Torque Constant   | p0316 motor torque constant               |
| 14  | get, set | UINT32 | Inertia           | p0341 motor moment of inertia             |
| 15  | get, set | UINT16 | Base Speed        | p0311 motor rated speed                   |

| Value in p | 0300                                  | Ether | net/IP motor data object,        |
|------------|---------------------------------------|-------|----------------------------------|
| 0          | No motor                              | 0     | Non-standard motor               |
| 1          | Asynchronous motor                    | 7     | Squirrel cage asynchronous motor |
| 6          | Reluctance motor                      | 0     | Non-standard motor               |
| 10         | 1LE1 asynchronous motor               | 7     | Squirrel cage asynchronous motor |
| 13         | 1LG6 asynchronous motor               | 7     | Squirrel cage asynchronous motor |
| 17         | 1LA7 asynchronous motor               | 7     | Squirrel cage asynchronous motor |
| 19         | 1LA9 asynchronous motor               | 7     | Squirrel cage asynchronous motor |
| 100        | 1LE1 asynchronous motor               | 7     | Squirrel cage asynchronous motor |
| 101        | 1PC1 asynchronous motor               | 0     | Non-standard motor               |
| 181        | 2KJ8 asynchronous motor               | 0     | Non-standard motor               |
| 600        | 1FP1 synchronous reluctance motor     | 0     | Non-standard motor               |
| 602        | 2KJ8 synchronous reluctance motor     | 0     | Non-standard motor               |
| 603        | 1FP3 synchronous reluctance motor OEM | 0     | Non-standard motor               |

## Supervisor Object, Instance Number: 29 hex

## Supported services

Class

• Get Attribute single

- Instance Get Attribute single
  - Set Attribute single

### **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

## **Instance Attribute**

| No. | Service  | Туре   | Name            | Value/explanation                                                                                                                                                                      |
|-----|----------|--------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | get, set | Bool   | Run1            | STW.0 operation, clockwise rotation                                                                                                                                                    |
| 5   | get, set | Bool   | Net Control     | Internal<br>O: Local<br>1: Network                                                                                                                                                     |
| 6   | get      | UINT8  | State           | <ul> <li>0: Vendor Specific</li> <li>1: Startup</li> <li>2: Not_Ready</li> <li>3: Ready</li> <li>4: Enabled</li> <li>5: Stopping</li> <li>6: Fault_Stop</li> <li>7: Faulted</li> </ul> |
| 7   | get      | Bool   | Running1        | ZSW1:2<br>1: - (Enabled and Run1) or<br>- (Stopping and Running1) or<br>- (Fault_Stop and Running1)<br>0 = Other state                                                                 |
| 9   | get      | Bool   | Ready           | ZSW1:0<br>1: - Ready or<br>- Enabled or<br>- Stopping<br>0 = Other state                                                                                                               |
| 10  | get      | Bool   | Fault           | ZSW1:3 drive fault                                                                                                                                                                     |
| 11  | get      | Bool   | Warning         | ZSW1:7 alarm active                                                                                                                                                                    |
| 12  | get, set | Bool   | Fault reset     | STW.7 acknowledge fault                                                                                                                                                                |
| 13  | get      | UINT16 | Fault Code      | r945[0] error code                                                                                                                                                                     |
| 14  | get      | UINT16 | Warning<br>Code | r2122[0] alarm code                                                                                                                                                                    |
| 15  | get      | Bool   | CtlFromNet      | Display from Net Control<br>1: Control from network<br>0: Local control                                                                                                                |

## Drive Object, Instance Number: 2A hex

## Supported services

Class • Get Attribute single

- Instance Get Attribute single
  - Set Attribute single

### **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

### **Instance Attribute**

| No. | Service  | Туре   | Name                                                                                                     | Value/explanation                                             |
|-----|----------|--------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 3   | get      | Bool   | At reference r2197.7<br>1: Speed setpoint - actual value deviation in tolerance<br>t_off<br>0: Otherwise |                                                               |
| 4   | get      | Bool   | Net_reference         Internal           0:         Local           1:         Network                   |                                                               |
| 6   | get      | UINT8  | Drive_Mode                                                                                               | p1300 manufacturer-specific, see following table              |
| 7   | get      | INT    | Speed Actual                                                                                             | Main actual value, see speed units                            |
| 8   | get, set | INT    | Speed Ref                                                                                                | Main setpoint, see speed units                                |
| 9   | get      | INT    | Current Actual                                                                                           | r0027 absolute current actual value, smoothed                 |
| 10  | get      | INT    | Current limit                                                                                            | p0323 maximum motor current                                   |
| 15  | get      | INT    | Power Actual                                                                                             | r0032 actual active power smoothed                            |
| 16  | get      | INT    | Output voltage                                                                                           | r0025 output voltage smoothed                                 |
| 17  | get      | INT    | Output voltage                                                                                           | r0072 output voltage                                          |
| 18  | get, set | UINT16 | AccelTime                                                                                                | p1120 ramp-function generator ramp-up time                    |
| 19  | get, set | UINT16 | DecelTime                                                                                                | p1121 ramp-function generator, ramp-down time                 |
| 20  | get, set | UINT16 | Low Speed Lim                                                                                            | p1080 minimum speed                                           |
| 21  | get, set | UINT16 | High Speed Lim                                                                                           | p1082 maximum speed                                           |
| 22  | get, set | SINT   | Speed Scale                                                                                              | p8982 Ethernet/IP ODVA speed scaling                          |
| 29  | get      | Bool   | Ref From Net                                                                                             | Internal - display of Net_Reference<br>0: Local<br>1: Network |

| Value | e in p1300                               | Ethe | ernet/IP motor data object  |  |  |
|-------|------------------------------------------|------|-----------------------------|--|--|
| 0     | U/f with linear characteristic           | 1    | Open loop speed (frequency) |  |  |
| 1     | U/f with linear characteristic and FCC   | 0    | Vendor-specific mode        |  |  |
| 2     | U/f with parabolic characteristic        |      |                             |  |  |
| 4     | U/f with linear characteristic and ECO   |      |                             |  |  |
| 7     | U/f for parabolic characteristic and ECO |      |                             |  |  |
| 20    | Speed control (without encoder)          | 2    | Closed-loop speed control   |  |  |

## Siemens Drive Object, Instance Number: 32C hex

## Supported services

Class • Get Attribute single

- Instance Get Attribute single
  - Set Attribute single

## **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

## **Instance Attribute**

| No.      | Туре            | Service  | Name                     | Value/explanation                                                |
|----------|-----------------|----------|--------------------------|------------------------------------------------------------------|
| 2        | INT16           | get, set | Commissioning state      | p0010 commissioning parameter filter                             |
| 3 1<br>8 | WORD            | get      | STW1                     | STW1 bit-by-bit access:<br>Attr.3 = STW1.0<br>Attr.18 = STW1.15  |
| 19       | WORD            | get      | Main setpoint            | Main setpoint                                                    |
| 20<br>35 | WORD            | get      | ZSW1                     | ZSW1 bit-by-bit access:<br>Attr.20 = ZSW1.0<br>Attr.35 = ZSW1.15 |
| 36       | WORD            | get      | Actual Frequency         | Main actual value (actual frequency)                             |
| 37       | REAL            | get, set | Ramp Up Time             | p1120[0] ramp-function generator ramp-up time                    |
| 38       | REAL            | get, set | Ramp Down Time           | p1121[0] ramp-function generator ramp-<br>down time              |
| 39       | REAL            | get, set | Current Limit            | p0640[0] current limit                                           |
| 40       | REAL            | get, set | Frequency MAX Limit      | p1082[0] maximum speed                                           |
| 41       | REAL            | get, set | Frequency MIN Limit      | p1080[0] minimum speed                                           |
| 42       | REAL            | get, set | OFF3 Ramp Down Time      | p1135[0] OFF3 ramp-down time                                     |
| 43       | UINT32/<br>BOOL | get, set | PID Enable               | p2200[0] technology controller enable                            |
| 44       | REAL            | get, set | PID Filter Time Constant | p2265 technology controller actual value filter time constant    |
| 45       | REAL            | get, set | PID D Gain               | p2274 technology controller differentiation time constant        |
| 46       | REAL            | get, set | PID P Gain               | p2280 technology controller proportional gain                    |
| 47       | REAL            | get, set | PID I Gain               | p2285 technology controller integral time                        |
| 48       | REAL            | get, set | PID Up Limit             | p2291 technology controller maximum limit-<br>ing                |
| 49       | REAL            | get, set | PID Down Limit           | p2292 technology controller minimum limiting                     |
| 50       | REAL            | get      | Speed setpoint           | r0020 speed setpoint                                             |
| 51       | REAL            | get      | Output Frequency         | r0024 output frequency                                           |
| 52       | REAL            | get      | Output Voltage           | r0025 output voltage                                             |
| 53       | REAL            | get      | DC Link Voltage          | r0026[0] DC link voltage                                         |

| No. | Туре   | Service | Name                   | Value/explanation                                                      |
|-----|--------|---------|------------------------|------------------------------------------------------------------------|
| 54  | REAL   | get     | Actual Current         | r0027 current actual value                                             |
| 55  | REAL   | get     | Actual Torque          | r0031 torque actual value                                              |
| 56  | REAL   | get     | Output power           | r0032 actual active power value                                        |
| 57  | REAL   | get     | Motor Temperature      | r0035[0] motor temperature                                             |
| 58  | REAL   | get     | Power Unit Temperature | r0037[0] power unit temperature                                        |
| 59  | REAL   | get     | Energy kWh             | r0039 energy display                                                   |
| 60  | UINT8  | get     | CDS Eff (Local Mode)   | r0050 active command data set                                          |
| 61  | WORD   | get     | Status Word 2          | r0053 status word 2                                                    |
| 62  | WORD   | get     | Control Word 1         | r0054 control word 1                                                   |
| 63  | REAL   | get     | Motor Speed (Encoder)  | r0061 speed actual value                                               |
| 64  | UINT32 | get     | Digital Inputs         | r0722 digital inputs status                                            |
| 65  | UINT32 | get     | Digital Outputs        | r0747 digital outputs status                                           |
| 66  | REAL   | get     | Analog Input 1         | r0752[0] analog input 1                                                |
| 67  | REAL   | get     | Analog Input 2         | r0752[1] analog input 2                                                |
| 68  | REAL   | get     | Analog Output 1        | r0774[0] analog output 1                                               |
| 69  | REAL   | get     | Analog Output 2        | r0774[1] analog output 2                                               |
| 70  | UINT16 | get     | Fault Code 1           | r0947[0] fault number 1                                                |
| 71  | UINT16 | get     | Fault Code 2           | r0947[1] fault number 2                                                |
| 72  | UINT16 | get     | Fault Code 3           | r0947[2] fault number 3                                                |
| 73  | UINT16 | get     | Fault Code 4           | r0947[3] fault number 4                                                |
| 74  | UINT16 | get     | Fault Code 5           | r0947[4] fault number 5                                                |
| 75  | UINT16 | get     | Fault Code 6           | r0947[5] fault number 6                                                |
| 76  | UINT16 | get     | Fault Code 7           | r0947[6] fault number 7                                                |
| 77  | UINT16 | get     | Fault Code 8           | r0947[7] fault number 8                                                |
| 78  | REAL   | get     | Pulse Frequency        | r1801 pulse frequency                                                  |
| 79  | UINT16 | get     | Alarm Code 1           | r2110[0] alarm number 1                                                |
| 80  | UINT16 | get     | Alarm Code 2           | r2110[1] alarm number 2                                                |
| 81  | UINT16 | get     | Alarm Code 3           | r2110[2] alarm number 3                                                |
| 82  | UINT16 | get     | Alarm Code 4           | r2110[3] alarm number 4                                                |
| 83  | REAL   | get     | PID setpoint Output    | r2260 technology controller setpoint after the ramp-function generator |
| 84  | REAL   | get     | PID Feedback           | r2266 technology controller actual value after the filter              |
| 85  | REAL   | get     | PID Output             | r2294 technology controller output signal                              |

## Siemens Motor Data Object, Instance Number: 32D hex

## Supported services

• Get Attribute single Class

- Instance Get Attribute single
  - Set Attribute single

### **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

#### **Instance Attribute**

| No. | Service  | Туре   | Name                | Value/explanation |
|-----|----------|--------|---------------------|-------------------|
| 2   | get, set | UINT16 | Commissioning state | p0010             |
| 3   | get      | INT16  | Motor Type          | p0300             |
| 6   | get, set | REAL   | Rated Current       | p0305             |
| 7   | get, set | REAL   | Rated Voltage       | p0304             |
| 8   | get, set | REAL   | Rated Power         | p0307             |
| 9   | get, set | REAL   | Rated Frequency     | p0310             |
| 10  | get, set | REAL   | Rated Temperature   | p0605             |
| 11  | get, set | REAL   | Max Speed           | p0322             |
| 12  | get, set | UINT16 | Pole pair number    | p0314             |
| 13  | get      | UINT32 | Torque Constant     | p0316             |
| 14  | get, set | REAL   | Inertia             | p0341             |
| 15  | get, set | REAL   | Base Speed          | p0311             |
| 19  | get, set | REAL   | Cos Phi             | p0308             |

## TCP/IP Interface Object, Instance Number: F5 hex

## Supported services

- Class Get Attribute all
  - Get Attribute single
- Instance Get Attribute all
  - Get Attribute single
  - Set Attribute single

### **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

## **Instance Attribute**

| No. | Service | Туре   | Name                               | Value/explanation                                                                                              |
|-----|---------|--------|------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1   | get     | UNIT32 | Status                             | Fixed value: 1 hex<br>1: Configuration acknowledged, by DHCP or saved values                                   |
| 2   | get     | UNIT32 | Configura-<br>tion Capabil-<br>ity | Fixed value: 94 hex<br>4 hex: DHCP supported,<br>10 hex: Configuration can be adjusted,<br>80 hex: ACD-capable |

| No. | Service  | Туре   | Name                       | Value/explanation                                                                                                                          |
|-----|----------|--------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | get, set | UNIT32 | Configura-<br>tion Control | 1 hex: Saved values<br>3 hex: DHCP                                                                                                         |
| 4   | get      | UNIT16 | Path Size (in<br>WORDs)    | Fixed value: 2 hex                                                                                                                         |
|     |          | UNIT8  | Path                       | 20 hex,<br>F6 hex,<br>24 hex,<br>05 hex, where 5 hex is the number of instances of F6 hex<br>(four physical ports plus one internal port). |
| 5   | get, set | STRING | Interface                  | r61000 Name of Station                                                                                                                     |
|     |          | UNIT32 | Configura-<br>tion         | r61001 IP address                                                                                                                          |
| 6   | get, set | UNIT16 | Host Name                  | Host Name Length                                                                                                                           |
|     |          | STRING |                            |                                                                                                                                            |
| 10  | get, set | UNIT8  | Select ACD                 | local OM flash:<br>0: Disabled,<br>1: Enabled                                                                                              |
| 11  | get, set | UNIT8  | Last Conflict              | local OM flash ACD Activity                                                                                                                |
|     |          | UNIT8  | Detected                   | local OM flash Remote MAC                                                                                                                  |
|     |          | UNIT8  |                            | local OM flash ARP PDU                                                                                                                     |

## Link Object, Instance Number: F6 hex

### Supported services

• Get Attribute all Class

- Get Attribute single
- Instance Get Attribute all
  - Get Attribute single
  - Set Attribute single

## **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

## **Instance Attribute**

| No. | Service | Туре   | Name             | Value/explanation                                                                                                                                                              |
|-----|---------|--------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | get     | UINT32 | Interface Speed  | 0: link down,<br>10: 10 Mbps,<br>100: 100 Mbps                                                                                                                                 |
| 2   | get     |        | Interface Flags  | Bit 1: Link-Status<br>Bit 2: Duplex Mode (0: halb duplex, 1 duplex<br>Bit 3 5: Automatic state identification<br>Bit 6: Reset required<br>Bit 7: Local hardware fault (0 = ok) |
| 3   | get     | ARRAY  | Physical Address | r8935 Ethernet MAC address                                                                                                                                                     |

## Advanced commissioning

## 6.6 Drive control via Ethernet/IP

| No. | Service                                             | Туре      | Name                        | Value/explanation                                                                                     |  |  |  |  |
|-----|-----------------------------------------------------|-----------|-----------------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|
| 4   | get_and<br>_clear                                   | Struct of | Interface Counters          | Optional, required if the "Media Counters Attribute" is implemented.                                  |  |  |  |  |
|     |                                                     | UINT32    | In Octets                   | Received octets                                                                                       |  |  |  |  |
|     | UINT32 In Ucast Packets<br>UINT32 In NUcast Packets |           | In Ucast Packets            | Received Unicast packets                                                                              |  |  |  |  |
|     |                                                     |           | In NUcast Packets           | Received non-Unicast packets                                                                          |  |  |  |  |
|     |                                                     | UINT32    | In Discards                 | Incoming packets, not processed                                                                       |  |  |  |  |
|     |                                                     | UINT32    | In Errors                   | Incoming packets with errors                                                                          |  |  |  |  |
|     |                                                     | UINT32    | In Unknown Protos           | Incoming packets with unknown protocol                                                                |  |  |  |  |
|     |                                                     | UINT32    | Out Octets                  | Sent octets                                                                                           |  |  |  |  |
|     |                                                     | UINT32    | Out Ucast Packets           | Sent Unicast packets                                                                                  |  |  |  |  |
|     |                                                     | UINT32    | Out NUcast packets          | Sent non-Unicast packets                                                                              |  |  |  |  |
|     |                                                     | UINT32    | Out Discards                | Outgoing packets, not processed                                                                       |  |  |  |  |
|     |                                                     | UINT32    | Out Errors                  | Outgoing packets, with errors                                                                         |  |  |  |  |
| 5   | get_and                                             | Struct of | Media Counters              | Media-specific counters                                                                               |  |  |  |  |
|     | _clear                                              | UINT32    | Alignment Errors            | Structure received, which does not match the num-<br>ber of octets                                    |  |  |  |  |
|     | UINT32 FCS Errors                                   |           | FCS Errors                  | Structure received, which does not pass the FCS check                                                 |  |  |  |  |
|     |                                                     | UINT32    | Single Collisions           | Structure successfully transmitted, precisely one col-<br>lision                                      |  |  |  |  |
|     |                                                     | UINT32    | Multiple Collisions         | Structure successfully transmitted, several collisions                                                |  |  |  |  |
|     |                                                     | UINT32    | SQE Test Errors             | Number of SQE errors                                                                                  |  |  |  |  |
|     |                                                     | UINT32    | Deferred Transmis-<br>sions | First transmission attempt delayed                                                                    |  |  |  |  |
|     |                                                     | UINT32    | Late Collisions             | Number of collisions that occurred delayed by 512 bit timers to the request                           |  |  |  |  |
|     |                                                     | UINT32    | Excessive Collisions        | Transmission unsuccessful as a result of intensive col-<br>lisions                                    |  |  |  |  |
|     |                                                     | UINT32    | MAC Transmit Errors         | Transmission unsuccessful as a result of an internal MAC sublayer transmission error.                 |  |  |  |  |
|     |                                                     | UINT32    | Carrier Sense Errors        | Times that the carrier sense condition was lost or never asserted when attempting to transmit a frame |  |  |  |  |
|     |                                                     | UINT32    | Frame Too Long              | Structure too large                                                                                   |  |  |  |  |
|     |                                                     | UINT32    | MAC Receive Errors          | Transmission unsuccessful as a result of an internal MAC sublayer receive error.                      |  |  |  |  |
| 6   | get, set                                            | Struct of | Interface Control           |                                                                                                       |  |  |  |  |
|     |                                                     | UINT16    | Control Bits                |                                                                                                       |  |  |  |  |
|     |                                                     | UINT16    | Forced Interface<br>Speed   |                                                                                                       |  |  |  |  |
| 10  | get                                                 | String    | Interface_Label             | Interface-Label                                                                                       |  |  |  |  |

## Parameter Object, Instance Number: 401 hex

## Supported services

- Class Get Attribute all
- Instance Get Attribute all
  - Set Attribute single

#### **Class Attribute**

| No. | Service | Туре   | Name             |
|-----|---------|--------|------------------|
| 1   | get     | UINT16 | Revision         |
| 2   | get     | UINT16 | Max Instance     |
| 3   | get     | UINT16 | Num of Instances |

Cyclic communication is established via parameter object 401.

# Example: Read parameter 2050[10] (connector output to interconnect the PZD received from the fieldbus controller)

Get Attribute single function with the following values:

- Class = 401 hex
- Instance = 2050 = 802 hex corresponds to the parameter number
- Attribute = 10 = A hex corresponds to index 10

### Example: Parameter 1520[0] writing (upper torque limit)

Set Attribute single function with the following values:

- Class = 401 hex
- Instance = 1520 = 5F0 hex corresponds to the parameter number
- Attribute = 0 = 0 hex corresponds to index 0
- Data = 500.0 (value)

## 6.6.3 Supported ODVA AC/DC assemblies

## Overview

| Number |              | required/ | Туре      | Name                       |
|--------|--------------|-----------|-----------|----------------------------|
| hex    | dec optional |           |           |                            |
| 14 hex | 20           | Required  | Sending   | Basic Speed Control Output |
| 46 hex | 70           | Required  | Receiving | Basic Speed Control Input  |

## Assembly Basic Speed Control, Instance Number: 20, type: Output

| Byte | Bit 7                       | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit O   |  |
|------|-----------------------------|-------|-------|-------|-------|-------|-------|---------|--|
| 0    |                             |       |       |       |       | Fault |       | RUN     |  |
|      |                             |       |       |       |       | Reset |       | Forward |  |
| 1    |                             |       |       |       |       |       |       |         |  |
| 2    | Speed Reference (Low Byte)  |       |       |       |       |       |       |         |  |
| 3    | Speed Reference (High Byte) |       |       |       |       |       |       |         |  |

## Assembly Basic Speed Control, Instance Number: 70, type: Input

| Byte | Bit 7       | Bit 6                    | Bit 5 | Bit 4 | Bit 3 | Bit 2              | Bit 1 | Bit O   |  |  |
|------|-------------|--------------------------|-------|-------|-------|--------------------|-------|---------|--|--|
| 0    |             |                          |       |       |       | Running<br>Forward |       | Faulted |  |  |
| 1    |             | •                        |       |       |       |                    |       |         |  |  |
| 2    | Speed Actua | Speed Actual (Low Byte)  |       |       |       |                    |       |         |  |  |
| 3    | Speed Actua | Speed Actual (High Byte) |       |       |       |                    |       |         |  |  |

## 6.6.4 Creating generic I/O module

### Overview

For certain controllers, or if you wish to use the SINAMICS profile, you cannot use the EDS file provided by Siemens. In these cases, you must create a generic I/O module in the control system for the cyclic communication.

## **Function description**

### Procedure

- 1. In your control, create a generic device with Ethernet/IP functionality.
- 2. In the control, enter the lengths for the process data for cyclic communication in the new device which you set in the converter, r2067[0] (input), r2067[1] (output), for example: Standard telegram 2/2.

4 ms is supported as the minimum value for RPI (Requested Packet Interval).

3. In the converter, set the same values for IP address, subnet mask, default gateway and name of the station as in the control.

Configuring communication via Ethernet/IP (Page 163)

You have created a generic I/O module for cyclic communication with the converter.  $\hfill\square$ 

## **Further information**

You can find a detailed description of how to create a generic I/O module on the Internet:

Application example (<u>https://support.industry.siemens.com/cs/ww/en/view/82843076</u>)

# 6.6.5 The converter as Ethernet node

## Integrating a converter into an Ethernet network (assigning an IP address)

#### Procedure

- 1. Set p8924 (PN DHCP mode) = 2 or 3
  - p8924 = 2: The DHCP server assigns the IP address based on the MAC address of the converter.
  - p8924 = 3: The DHCP server assigns the IP address based on the device name of the converter.
- 2. Save the settings with p8925 = 2. The next time that the converter switches on, it retrieves the IP address, and you can address the converter as Ethernet node.

#### Note

#### Immediate switchover without restart

The switchover to DHCP is performed immediately and without a restart if the change is carried out with the Ethernet/IP command "Set Attribute Single" (class F5 hex, attribute 3). The following options are available:

- via an Ethernet/IP controller
- via an Ethernet/IP commissioning tool

You have now integrated the converter into Ethernet.

#### Displays

- r8930: Device name of the converter
- r8934: Operating mode, PN or DHCP
- r8935: MAC address

#### Additional information

You can find information about parameters and messages (A08565) in the List Manual.

You can also integrate the converter into an Ethernet network by using Proneta or STEP 7.

# 6.7 Drive control via AS-i

## 6.7.1 Single Slave mode

In Single Slave mode, four bits are available for the communication between the AS-i master and the converter. The four bits are used to transfer process data. In parallel, the control can start a diagnostic request via AS-i.PO.

The following default interface settings are available; both work with profile 7.F.E.

- Macro 30: AS-i Single Slave with fixed setpoint
- Macro 66: AS-i Single Slave with setpoint from Potentiometer 1 or Potentiometer 2

## Macro 30: AS-i Single Slave with fixed setpoint

In standard addressing, the control specifies the speed setpoint via the motor control bits (AS-i.DO0 ... AS-i.DO3).

#### Control $\rightarrow$ Converter

| • | AS-i.DO0 | $\rightarrow$ | p1020 = 2093.0 | Fixed speed bit 0 |
|---|----------|---------------|----------------|-------------------|
| • | AS-i.DO1 | $\rightarrow$ | p1021 = 2093.1 | Fixed speed bit 1 |
| • | AS-i.DO2 | $\rightarrow$ | p1022 = 2093.2 | Fixed speed bit 2 |
| • | AS-i.DO3 | $\rightarrow$ | p1023 = 2093.3 | Fixed speed bit 3 |
| • | AS-i.DO3 | $\rightarrow$ | p1023 = 2093.3 | Fixed speed bit 3 |

Fixed speeds via the motor control bits (Page 184)

## Converter $\rightarrow$ control

If the control specifies the speed setpoint, the converter replies:

- $p2080[0] = 53.13 \rightarrow AS-i.DI0$  Operational enable for PLC
- p2080[1] = 899.11 → AS-i.DI1 Pulses enabled
- p2080[2] = 722.0 → AS-i.DI2 State DI0
- p2080[3] = 722.1 → AS-i.DI3 State DI1

If the control sends a diagnostic request via AS-i.PO, the converter replies with the currently pending fault or alarm messages.

Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 184)

## Macro 66: AS-i Single Slave with setpoint from Potentiometer 1 or Potentiometer 2

In Single Slave mode with modified addressing the control specifies the following:

#### Control $\rightarrow$ Converter

| • AS-i.DO0 | → p3330          | .0 = 2093.0          | ON clockwise / OFF 1                                                        |
|------------|------------------|----------------------|-----------------------------------------------------------------------------|
| • AS-i.DO1 | → p3331          | .0 = 2093.1          | ON counter-clockwise / OFF 1                                                |
| • AS-i.DO2 | → p0810          | = 2093.2             | Switch speed setpoint between Potentiometer<br>1 and Potentiometer 2        |
| • AS-i.DO3 | → p2104<br>p0852 | = 2093.3<br>= 2093.3 | Acknowledge errors with a positive edge<br>Operating enable, if p2093.3 = 1 |

## Converter $\rightarrow$ control

The converter sends as response:

- p2080[0] = 899.0 → AS-i.DI0
- p2080[1] = 807.0 → AS-i.DI1
- $p2080[2] = 722.0 \rightarrow AS-i.D12$  State DIO
- p2080[3] = 722.1 → AS-i.DI3 State DI1

If the control sends a diagnostic request via AS-i DIO, the converter replies with the currently pending fault or alarm messages.

Control priority

Ready to switch on / diagnostic request

- AS-i DIO = 1, pending alarm messages are replied.
- AS-i DIO = 0, pending fault messages are replied.

Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 184)

## Scaling factors for the speed

The scaling factor is specified via AS-i.PO ... AS-i.P3.

This means, if the control specifies a scaling factor, it accepts simultaneously the sent value consisting of AS-i.PO ... AS-i.P3 as new scaling factor.

- AS-i.P0 Scaling factor bit 0
- AS-i.P1 Scaling factor bit 1
- AS-i.P2 Scaling factor bit 2
- AS-i.P3 Scaling factor bit 3

Scaling of the speed setpoint via AS-i.P0 ... AS-i.P3 (Page 184)

# **Further information**

For more information about the AS-i system, see the AS-Interface - Introduction and Basics Manual.

Overview of the manuals (Page 592)

# 6.7.2 Dual Slave mode

In Dual Slave mode, eight bits are available for the communication between the AS-i master and the converter. The eight bits are used to transfer process data. In parallel, the control can start a diagnostic request via AS-i.PO.

The following default interface settings are possible:

- Macro 31: AS-i Dual Slave with fixed setpoint
- Macro 34: AS-i Dual Slave with fieldbus setpoint

## Macro 31: AS-i Dual Slave with fixed setpoint

The control accesses the two slaves of the converter each via four bits.

Via Slave 2, in accordance with profile 7.A.E, the control specifies the speed setpoint via the motor control bits (AS-i.DO0 ... AS-i.DO2).

Via Slave 1, the control sends data in cyclical or acyclical mode, in accordance with profile 7.A.5.

The control requires one bit per slave in order to specify the slave.

# Macro 31, Slave 2 with profile 7.A.E: Control → Converter

- AS-i.DO0  $\rightarrow$  p1020.0 = 2093.0 Fixed speed bit 0
- AS-i.DO1  $\rightarrow$  p1021.0 = 2093.1 Fixed speed bit 1
- AS-i.DO2  $\rightarrow$  p1022.0 = 2093.2 Fixed speed bit 2
- AS-i.DO3 → Select Slave A or Slave B, interconnected internally

Fixed speeds via the motor control bits and response in the converter (Page 184)

If the control specifies the speed setpoint, the converter replies:

## Macro 31, Slave 2 with profile 7.A.E: Converter $\rightarrow$ control

| • p2080[0] = 53.13  | PLC ready to switch on | $\rightarrow$ | AS-i.DI0 |
|---------------------|------------------------|---------------|----------|
| • p2080[1] = 899.11 | Pulses enabled         | $\rightarrow$ | AS-i.DI1 |
| • p2080[2] = 722.0  | State DIO              | $\rightarrow$ | AS-i.DI2 |
| • p2080[3] = 722.1  | State DI1              | $\rightarrow$ | AS-i.DI3 |

If the control sends a diagnostic request via AS-i.PO, the converter replies with the currently pending fault or alarm messages.

Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 184)

## Macro 31, Slave 1 with profile 7.A.5: Control → Converter

- AS-i.DO0 → Time signal for the CTT2 (Combined Transaction Type 2) transfer from the AS-i master
   AS-i.DO1 → Data bit for the CTT2 transfer, four bytes cyclically or acyclically via PIV (parameter channel). The reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- AS-i.DO2  $\rightarrow$  p3390 = 2093.4 Override quick stop
- AS-i.DO3 → Select Slave A or Slave B, interconnected internally

#### Macro 31, Slave 1 with profile 7.A.5: Converter → control

| • | p2080[4] = 722.2 | State DI2 | $\rightarrow$ | AS-i.DI0 |
|---|------------------|-----------|---------------|----------|
| • | p2080[5] = 722.3 | State DI3 | $\rightarrow$ | AS-i.DI1 |

- Serial data transfer CTT2, four bytes cyclically or acyclically via PIV. The → AS-i.DI2 reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- Time signal for the CTT2 transfer to the AS-i master  $\rightarrow$  AS-i.DI3

Cyclic and acyclic communication via CTT2 (Page 186)

## Macro 34: AS-i Dual Slave with fieldbus setpoint

The control accesses the two slaves of the converter each via four bits.

Via Slave 2, in accordance with profile 7.A.E, the control specifies the commands listed below (AS-i.DO0 ... AS-i.DO2).

Via Slave 1, the control sends the command for quick stop and the data in cyclical or acyclical mode.

The control requires one bit per slave in order to specify the slave.

## Macro 34, Slave 2 with profile 7.A.E: Control $\rightarrow$ Converter

| • | AS-i.DO0 | $\rightarrow$ | ON / OFF 1 |
|---|----------|---------------|------------|
|---|----------|---------------|------------|

- AS-i.DO1  $\rightarrow$  OFF 2
- AS-i.DO2 → Acknowledge fault
- AS-i.DO3 → Select Slave A or Slave B, interconnected internally

If the control specifies the speed setpoint, the converter replies:

## Macro 34, Slave 2 with profile 7.A.E: Converter $\rightarrow$ control

| • | p2080[0] = 53.13  | PLC ready to switch on | $\rightarrow$ | AS-i.DI0 |
|---|-------------------|------------------------|---------------|----------|
| • | p2080[1] = 899.11 | Pulses enabled         | $\rightarrow$ | AS-i.DI1 |
| • | p2080[2] = 722.0  | State DIO              | $\rightarrow$ | AS-i.DI2 |
| • | p2080[3] = 722.1  | State DI1              | $\rightarrow$ | AS-i.DI3 |

If the control sends a diagnostic request via AS-i.PO, the converter replies with the currently pending fault or alarm messages.

Alarm and fault messages via RPO ... RP3 from the converter to the AS-i master (Page 184)

## Macro 34, Slave 1 with profile 7.A.5: Control $\rightarrow$ Converter

- AS-i.DO0  $\rightarrow$  Time signal for the CTT2 transfer from the AS-i master
- AS-i.DO1 → Data bit for the CTT2 transfer, four bytes cyclically or acyclically via PIV. The reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- AS-i.DO2  $\rightarrow$  p3390 = 2093.4 Override quick stop
- AS-i.DO3  $\rightarrow$  Select Slave A or Slave B, interconnected internally

#### Macro 34, Slave 1 with profile 7.A.5: Converter $\rightarrow$ control

- p2080[4] = 722.2 State DI2 → AS-i.DI0
- p2080[5] = 722.3 State DI3 → AS-i.DI1
- Serial data transfer CTT2, four bytes cyclically or acyclically via PIV. The → AS-i.DI2 reading and writing of parameters is possible via the PIV. Because data is transferred bit-by-bit, the read and write process is very slow.
- Time signal for the CTT2 transfer to the AS-i master  $\rightarrow$  AS-i.DI3

Cyclic and acyclic communication via CTT2 (Page 186)

# **Further information**

For more information about the AS-i system, see the AS-Interface - Introduction and Basics Manual.

Overview of the manuals (Page 592)

# 6.7.3 Assignment tables

# Fixed speeds - Single Slave

## Fixed speeds via the motor control bits

| AS-i.DO3 | AS-i.DO2 | AS-i.DO1 | AS-i.DO0 | AS-i.DO0 Response in the converter              |  |
|----------|----------|----------|----------|-------------------------------------------------|--|
| 0        | 0        | 0        | 0        | OFF1                                            |  |
| 0        | 0        | 0        | 1        | On + fixed speed 1 (factory setting: 1500 rpm)  |  |
| 0        | 0        | 1        | 0        | On + fixed speed 2 (factory setting: -1500 rpm) |  |
| 0        | 0        | 1        | 1        | On + fixed speed 3 (factory setting: 300 rpm)   |  |
| 0        | 1        | 0        | 0        | On + fixed speed 4 (factory setting: 450 rpm)   |  |
| 0        | 1        | 0        | 1        | On + fixed speed 5 (factory setting: 600 rpm)   |  |
| 0        | 1        | 1        | 0        | On + fixed speed 6 (factory setting: 750 rpm)   |  |
| 0        | 1        | 1        | 1        | On + fixed speed 7 (factory setting: 900 rpm)   |  |
| 1        | 0        | 0        | 0        | On + fixed speed 8 (factory setting: 1050 rpm)  |  |
| 1        | 0        | 0        | 1        | On + fixed speed 9 (factory setting: 1200 rpm)  |  |
| 1        | 0        | 1        | 0        | On + fixed speed 10 (factory setting: 1350 rpm) |  |
| 1        | 0        | 1        | 1        | On + fixed speed 11 (factory setting: 1500 rpm) |  |
| 1        | 1        | 0        | 0        | On + fixed speed 12 (factory setting: 1650 rpm) |  |
| 1        | 1        | 0        | 1        | On + fixed speed 13 (factory setting: 1800 rpm) |  |
| 1        | 1        | 1        | 0        | On + fixed speed 14 (factory setting: 1950 rpm) |  |
| 1        | 1        | 1        | 1        | Acknowledge fault or OFF2                       |  |

# Modified addressing - scaling factors

Scaling of the speed setpoint via AS-i.P0 ... AS-i.P3

| AS-i.P3 | AS-i.P2 | AS-i.P1 | AS-i.P0 | Speed setpoint scaling factor |
|---------|---------|---------|---------|-------------------------------|
| 1       | 1       | 1       | 1       | 100%                          |
| 1       | 1       | 1       | 0       | 90%                           |
| 1       | 1       | 0       | 1       | 80%                           |
| 1       | 1       | 0       | 0       | 70%                           |
| 1       | 0       | 1       | 1       | 60%                           |
| 1       | 0       | 1       | 0       | 50%                           |
| 1       | 0       | 0       | 1       | 45%                           |
| 1       | 0       | 0       | 0       | 40%                           |
| 0       | 1       | 1       | 1       | 35%                           |

| AS-i.P3 | AS-i.P2 | AS-i.P1 | AS-i.P0 | Speed setpoint scaling factor |
|---------|---------|---------|---------|-------------------------------|
| 0       | 1       | 1       | 0       | 30%                           |
| 0       | 1       | 0       | 1       | 25%                           |
| 0       | 1       | 0       | 0       | 20%                           |
| 0       | 0       | 1       | 1       | 15%                           |
| 0       | 0       | 1       | 0       | 10%                           |
| 0       | 0       | 0       | 1       | 7%                            |
| 0       | 0       | 0       | 0       | 5%                            |

# Fixed speeds - Dual Slave

# Fixed speeds via the motor control bits and response in the converter

| AS-i.DO2 | AS-i.DO1 | AS-i.DO0 | Response in the converter                       |
|----------|----------|----------|-------------------------------------------------|
| 0        | 0        | 0        | OFF1                                            |
| 0        | 0        | 1        | On + fixed speed 1 (factory setting: 1500 rpm)  |
| 0        | 1        | 0        | On + fixed speed 2 (factory setting: -1500 rpm) |
| 0        | 1        | 1        | On + fixed speed 3 (factory setting: 300 rpm)   |
| 1        | 0        | 0        | On + fixed speed 4 (factory setting: 450 rpm)   |
| 1        | 0        | 1        | On + fixed speed 5 (factory setting: 600 rpm)   |
| 1        | 1        | 0        | On + fixed speed 6 (factory setting: 750 rpm)   |
| 1        | 1        | 1        | Acknowledge fault or OFF2                       |

# Alarm and fault messages

# Alarm and fault messages via RP0 ... RP3 from the converter to the AS-i master

| RP3 | RP2 | RP1 | RP0 | AS-i.P0 = 0 $\rightarrow$ alarm messages                       | AS-i.P0 = 1 → faults                                                |
|-----|-----|-----|-----|----------------------------------------------------------------|---------------------------------------------------------------------|
| 0   | 0   | 0   | 0   | No alarm                                                       | No fault                                                            |
| 0   | 0   | 0   | 1   | Not used                                                       | Overtemperature (F30004, F30012,<br>F30013, F30024, F30025, F30036) |
| 0   | 0   | 1   | 0   | Not used                                                       | Not used                                                            |
| 0   | 0   | 1   | 1   | No load (A07929)                                               | Not used                                                            |
| 0   | 1   | 0   | 0   | Overtemperature (A05000,<br>A05004, A05006, A07012,<br>A07015) | l <sup>2</sup> t overload (F30005, F07936)                          |
| 0   | 1   | 0   | 1   | Overvoltage (A30502, A07400)                                   | Equipment malfunction (F01000 to F01257)                            |
| 0   | 1   | 1   | 0   | Local/Remote keyswitch in "Off"<br>(A03560)                    | Not used                                                            |
| 0   | 1   | 1   | 1   | Undervoltage (A30016, A07402)                                  | Motor PTC sensor malfunction (F07011, F07016)                       |
| 1   | 0   | 0   | 0   | l <sup>2</sup> t overload (A07805)                             | Overvoltage (F30002, F30011)                                        |
| 1   | 0   | 0   | 1   | Not used                                                       | Not used                                                            |
| 1   | 0   | 1   | 0   | Local mode active (A03561)                                     | Not used                                                            |
| 1   | 0   | 1   | 1   | Not used                                                       | Undervoltage (F30003, F07802)                                       |

| RP3 | RP2 | RP1 | RP0 | AS-i.P0 = 0 $\rightarrow$ alarm messages | AS-i.P0 = 1 → faults                                                               |
|-----|-----|-----|-----|------------------------------------------|------------------------------------------------------------------------------------|
| 1   | 1   | 0   | 0   | Not used                                 | Short-circuit at the output (F30001,<br>F30017, F30021, F07801, F07807,<br>F07900) |
| 1   | 1   | 0   | 1   | Motor phase loss (A30015 *)              | Motor phase loss (F30015, F07902)                                                  |
| 1   | 1   | 1   | 0   | Not used                                 | Safety fault (F016xx)                                                              |
| 1   | 1   | 1   | 1   | Other alarms                             | Other faults                                                                       |

\* A30015 will be generated after the message type of F30015 is changed to "Alarm". For more information on changing the message type, see p2118 and p2119 in the List Manual.

# 6.7.4 Cyclic and acyclic communication via CTT2

Via CTT2 (Combined Transaction Type 2), both cyclical and acyclical communication is performed via AS-i. Because only one channel is available (AS-i.DO1 master  $\rightarrow$  slave or AS-i.DI3 slave  $\rightarrow$  master), a concurrent cyclical and acyclical data exchange is not possible.

The communication type (cyclical or acyclical) is always coded in the first byte in accordance with the following table.

## CTT2 commands

| Code<br>(hex)                                                                                                      | Explanation/meaning                                 | Followed by                                  |  |  |
|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|--|--|
| Cyclic co                                                                                                          | mmunication                                         |                                              |  |  |
| Access to analog values via DS140 DS147. See CP 343–2 / CP                                                         |                                                     | 4 bytes: PWE1, PWE2                          |  |  |
|                                                                                                                    | AS-Interface master, Chapter 4                      | 4 bytes: PWE1, PWE2                          |  |  |
| CP 343–2 / CP 343–2 P AS–Interface master ( <u>https://</u><br>support.industry.siemens.com/cs/ww/en/view/5581657) |                                                     |                                              |  |  |
| Acyclic co                                                                                                         | ommunication - standard                             |                                              |  |  |
| 10 hex                                                                                                             | Read request: Master $\rightarrow$ slave            | 2 bytes: Index, length                       |  |  |
| 50 hex                                                                                                             | Read request OK: Slave $\rightarrow$ master         | Index, data                                  |  |  |
| 90 hex                                                                                                             | Read request failed: Slave $\rightarrow$ master     | 1 byte: Standard error code (3 hex)          |  |  |
| 11 hex                                                                                                             | Write request: Master $\rightarrow$ slave           | Index, length, data                          |  |  |
| 51 hex                                                                                                             | Write request OK: Slave $\rightarrow$ master        |                                              |  |  |
| 91 hex                                                                                                             | Write request failed: Slave $\rightarrow$ master    | 1 byte: Standard error code (3 hex)          |  |  |
| Acyclic co                                                                                                         | ommunication - manufacturer-specific                |                                              |  |  |
| 12 hex                                                                                                             | Read request: Master $\rightarrow$ slave            | Index, length                                |  |  |
| 52 hex                                                                                                             | Read request OK: Slave $\rightarrow$ master         | Data                                         |  |  |
| 92 hex                                                                                                             | Read request failed: Slave $\rightarrow$ master     | Fault object                                 |  |  |
| 13 hex                                                                                                             | Write request: Master $\rightarrow$ slave           | Index, length, data                          |  |  |
| 53 hex                                                                                                             | Write request OK: Slave $\rightarrow$ master        |                                              |  |  |
| 93 hex                                                                                                             | Write request failed: Slave $\rightarrow$ master    | Fault object                                 |  |  |
| 1D hex                                                                                                             | Exchange request: Master $\rightarrow$ slave        | Index, read length, write length, write data |  |  |
| 5D hex                                                                                                             | Exchange request OK: Slave $\rightarrow$ master     | PKE, index, n-2 data                         |  |  |
| 9D hex                                                                                                             | Exchange request faulty: Slave $\rightarrow$ master | Fault object                                 |  |  |

| Error message | Meaning                                                                                  |
|---------------|------------------------------------------------------------------------------------------|
| 0             | No fault                                                                                 |
| 1             | Invalid index                                                                            |
| 2             | Incorrect length                                                                         |
| 3             | Request not implemented                                                                  |
| 4             | Busy (the request could not be processed completely within the time window, retry later) |
| 5             | Last acyclical request was not confirmed                                                 |
| 6             | Invalid subindex                                                                         |
| 7             | "Selective read request" command missing                                                 |

If an acyclical request cannot be executed by the converter, it replies with one of the following error messages.

## 6.7.4.1 Cyclic communication

#### Converter $\rightarrow$ master

The converter cyclically transfers the data from p2051[1] and p2051[2] in four bytes to the master. You can process these four bytes in the control as for analog data. Refer to the documentation for the AS-i master for detailed information about access to analog data.

If you selected Macro 31 or 34 during the commissioning, the two indexes are interconnected as follows:

- p2051[1] = 63: Smoothed actual speed value
- p2051[2] = 27: Absolute smoothed actual current value

The values for transfer are normalized in accordance with the PROFIdrive N2 data type. Using p2051[1] and p2051[2] you can interconnect any other or connector parameters and transfer to the control.

#### Master → Converter

The master transfers the data in the "Combined Transaction Type 2" (CTT2) to the converter and writes it to r2050[1] and r2050[2].

To process these values in the converter, you must appropriately interconnect r2050[1] and r2050[2] in the converter. This means, when the control sends the speed setpoint, you must interconnect parameter p1070 (source for the main setpoint) with r2050 as follows: p1070[0] = 2050[1]

#### Note

#### Internal interconnection with Macro 34

If, when commissioning, you select Macro 34, then the main setpoint is internally interconnected with r2050[1].

Once a setpoint has been transferred completely, the setpoint present in the control will be transferred as next setpoint. Any setpoint changes made during the transfer are not considered.

# 6.7.4.2 Acyclic communication - standard

This type of acyclical communication supports the ID read request and the diagnostic read request. All other requests receive the "request not implemented" message response.

- ID request:
  - Master  $\rightarrow$  slave 10 hex 00 hex nn hex
  - Slave → master 50 hex 00 hex Manufacturer's ID Product ID BB hex
- Diagnostic request:
  - Master  $\rightarrow$  slave 10 hex 01 hex nn hex
  - Slave → master no error 50 hex 01 hex 00 hexSlave → master general error 50 hex 01 hex 99 hex

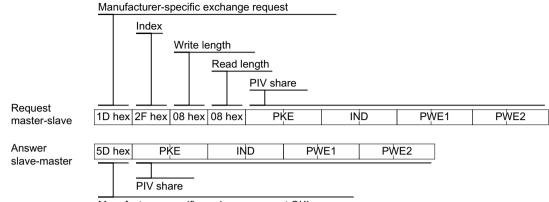
The following response is issued for all other write or read requests:

- Read requests 90 hex 03 hex
- Write requests 91 hex 03 hex

## 6.7.4.3 Acyclic communication - manufacturer-specific

The manufacturer-specific acyclical communication is performed via data record 47 in PIV format. The PIV (parameter channel) format structure is identical with that for the USS parameter channel.

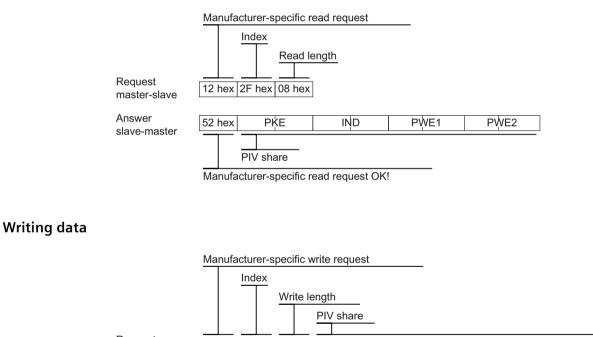
To reduce the transfer volume, there is not only the "normal" "data exchange" PIV mechanism, but also the "Read data" and "Write data" commands.


- Data exchange:
  - Control  $\rightarrow$  converter request
  - Converter  $\rightarrow$  control response
- Read data:

The converter sends a read command, and the data of the last exchange request or write request is transferred from the converter to the control.

Write data
 Write OK: → 53 hex.

Because the PIV transfer protocol specifies the transfer direction independently, all parameters can be transferred as data exchange request/response. Requests for reading and writing data are included primarily to reduce the transferred data volume for the repeated reading or writing of parameters.


## Data exchange



Manufacturer-specific exchange request OK!

## **Reading data**

The data for the last write or exchange request is read



PKE

| Request      |   |
|--------------|---|
| master-slave | ļ |

Answer

53 hex slave-master

Manufacturer-specific write request OK!

13 hex 2F hex 08 hex

In the event of a fault, the converter sends the following telegram as response to the master:

IND

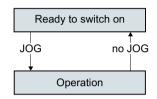
PWE1

PWE2

93 hex 00 hex PWE1

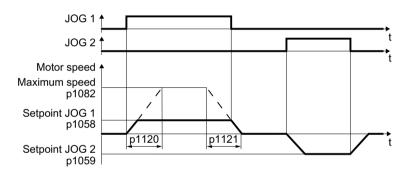
#### 6.8 Jogging

## **Further information**


For more information about the PIV format structure and the value for PWE in the USS parameter channel, see Section 5.3.4 "USS parameter channel" in the Fieldbus Function Manual.

# 6.8

# Jogging




The "JOG" function is typically used to temporarily move a machine part using local control commands, e.g. a transport conveyor belt.



Commands "JOG 1" or "JOG 2" switch the motor on and off.

The commands are only active when the converter is in the "Ready for switching on" state.



After switching on, the motor accelerates to the setpoint JOG 1 or setpoint JOG 2. The two different setpoints can, for example, be assigned to motor clockwise and counter-clockwise rotation.

In JOG mode, the same ramp-function generator is active as for the ON/OFF1 command.

## Parameters

| Parameter | Description                                     | Setting                                                  |
|-----------|-------------------------------------------------|----------------------------------------------------------|
| p1120[0n] | Ramp-function generator, ramp-<br>up time [s]   | Sets the ramp-up time for the ramp-function generator.   |
|           |                                                 | Factory setting: 1                                       |
| p1121[0n] | Ramp-function generator, ramp-<br>down time [s] | Sets the ramp-down time for the ramp-function generator. |
|           |                                                 | Factory setting: 1                                       |
| p1058[0n] | Jog 1 speed setpoint [rpm]                      | Sets the speed for JOG 1.                                |
|           |                                                 | Factory setting: 150                                     |

| Parameter | Description                | Setting                   |
|-----------|----------------------------|---------------------------|
| p1059[0n] | Jog 2 speed setpoint [rpm] | Sets the speed for JOG 2. |
|           |                            | Factory setting: -150     |
| p1082[0n] | Maximum speed [rpm]        | Sets the highest speed.   |
|           |                            | Factory setting: 1500     |

# 6.9 Conveyor technology control functions (for G115D PROFINET and AS-i variants only)

## Overview

Conveyors are devices used for movement of materials, products and loads throughout a manufacturing or distribution facility. Conventionally, the conveyor technology control is implemented in the PLC controller. By transferring the functionality to the converter, the conveying process starts via the PLC while stops depending on the sensor(s) wired directly to the converter. In this case, the materials conveyed can always come to a standstill at the same point independent of the cycle time of the PLC controller.

The SINAMICS G115D PROFINET and AS-i variants (I/O variants not supported) offer flexible and efficient solutions for the conveyor technology requirements of various horizontal or inclined applications in such industrial sectors as intralogistics, automotive, and airport.

#### Note

To make sure that the conveyor control function works properly on the SINAMICS G115D AS-i variant, you must select Macro 31 or 34. For more information on the wiring arrangement, See Section "Factory interface setting (Page 87)".

## Applications

- Roller, belt, or chain conveyors
- Turntables
- Corner turntable lifts
- Travelling trolleys



## **Commission tool**

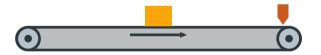
It is recommended that you commission the conveyor control function using the Startdrive PC tool or the SINAMICS G120 Smart Access.

Commissioning tools (Page 112)

#### Note

All screenshots in Chapter "Conveyor technology control functions" take the converter with PROFINET interface by using the Startdrive PC tool as examples. You can also commission the functions via the SINAMICS G120 Smart Access. For more information, see Section "Application setup" in the SINAMICS G120 Smart Access Operating Instructions.

Overview of the manuals (Page 592)

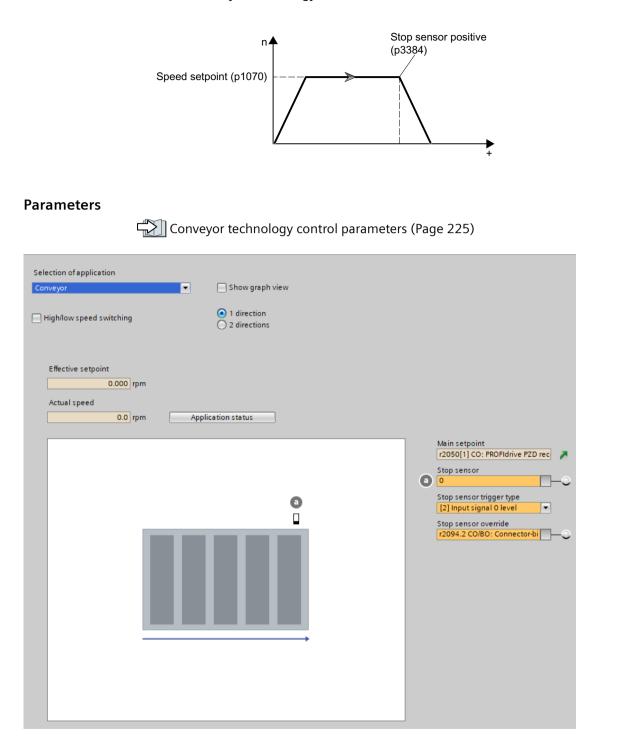

## 6.9.1 Conveyors

Conveyors move materials from one location to another. There are different types of conveyors (for example, roller conveyors, chain conveyors, or belt conveyors) available for use according to your particular applications.

## 6.9.1.1 Conveyor, one direction and one speed (p3393 = 1)

#### Overview

With p3393 (conveyor technology application) set to 1, the converter enables the load on a conveyor belt to move in one direction with a fixed speed. A sensor is required to signal the limit position for the motor to stop.




## Precondition

You interconnect the signal of the sensor with the digital input of your choice.

#### Function description

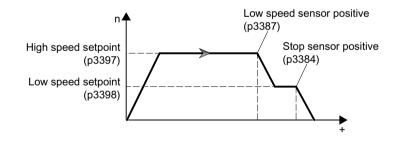
- With the ON command, the motor accelerates to its speed setpoint (p1070). The direction of the movement depends on the setpoint inversion (p1113):
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- The motor stops with OFF1 ramp when the stop sensor positive direction (p3384) is triggered (level/edge triggered depending on p3394).
- Setting the sensor bypass signal (p3390) to 1 overrides the stop sensor signal p3384.



## 6.9.1.2 Conveyor, one direction and two speeds (p3393 = 2)

## Overview

With p3393 (conveyor technology application) set to 2, the converter enables the load on a conveyor belt to move in one direction with variable speeds. Two sensors are required to signal the limit positions for the motor to stop or decelerate.




## Precondition

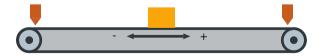
You interconnect the signals of the sensors with the digital inputs of your choice.

## **Function description**

- With the ON command, the motor accelerates to the high speed setpoint (p3397). The direction of the movement depends on the setpoint inversion (p1113):
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- The motor decelerates with OFF1 ramp to the low speed setpoint (p3398) when the low speed sensor positive direction (p3387) is triggered (level/edge triggered depending on p3395).
- The motor stops with OFF1 ramp when the stop sensor positive direction (p3384) is triggered (level/edge triggered depending on p3394).
- Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384 and p3387.



## Parameters

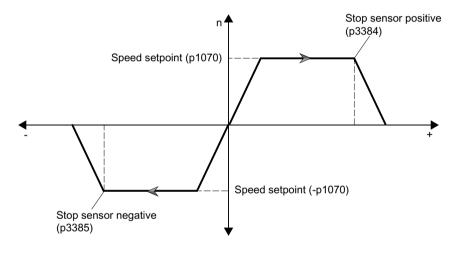

Conveyor technology control parameters (Page 225)

| Selection of application Conveyor                          | Show graph view                                       |                                                                                                                                                                                                                                                |
|------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High/low speed switching                                   | <ul> <li>1 direction</li> <li>2 directions</li> </ul> |                                                                                                                                                                                                                                                |
| Effective setpoint<br>0.000 rpm<br>Actual speed<br>0.0 rpm | Application status                                    |                                                                                                                                                                                                                                                |
|                                                            |                                                       | Main setpoint<br>[r2050[1] CO: PROFIdrive PZD rec<br>Low speed setpoint<br>0%<br>Stop sensor<br>0<br>Low speed sensor<br>0<br>Stop sensor trigger type<br>[2] Input signal 0 level<br>Low speed sensor override<br>r2094.2 CO/BO: Connector-bi |

## 6.9.1.3 Conveyor, two directions and one speed (p3393 = 3)

## Overview

With p3393 (conveyor technology application) set to 3, the converter enables the load on a conveyor belt to move in either positive or negative direction with a fixed speed. Two sensors are required to signal the limit positions for the motor to stop.




## Precondition

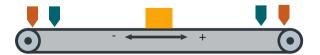
You interconnect the signals of the sensors with the digital inputs of your choice.

# **Function description**

- With the ON command, the motor accelerates to its speed setpoint (p1070). The load can move in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the movement in positive direction, the following applies:
  - The motor stops with OFF1 ramp when the stop sensor positive direction (p3384) is triggered (level/edge triggered depending on p3394).
  - No motor reaction is triggered by the stop sensor negative direction signal (p3385).
- With the movement in negative direction, the following applies:
  - The motor stops with OFF1 ramp when the stop sensor negative direction (p3385) is triggered (level/edge triggered depending on p3394).
  - No motor reaction is triggered by the stop sensor positive direction signal (p3384).
- Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384 and p3385.



## Parameters

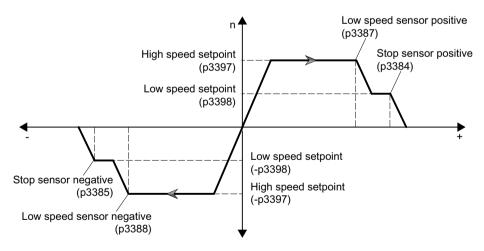

Conveyor technology control parameters (Page 225)

| Selection of application Conveyor High/low speed switching | <ul> <li>Show graph view</li> <li>1 direction</li> <li>2 directions</li> </ul> |   |                                                                                                                                                         |
|------------------------------------------------------------|--------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effective setpoint<br>0.000 rpm<br>Actual speed<br>0.0 rpm | Application status                                                             |   | Main setpoint<br>[r2050[1] CO: PROFIdrive PZD rec                                                                                                       |
|                                                            |                                                                                | • | Stop sensor +<br>0<br>Stop sensor -<br>0<br>Stop sensor trigger type<br>[2] Input signal 0 level<br>Stop sensor override<br>r2094.2 CO/BO: Connector-bi |

## 6.9.1.4 Conveyor, two directions and two speeds (p3393 = 4)

## Overview

With p3393 (conveyor technology application) set to 4, the converter enables the load on a conveyor belt to move in either positive or negative direction with variable speeds. Four sensors are required to signal the limit positions for the motor to stop or decelerate.




## Precondition

You interconnect the signals of the sensors with the digital inputs of your choice.


## **Function description**

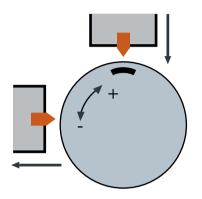
- With the ON command, the motor accelerates to the high speed setpoint (p3397). The load can move in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the movement in positive direction, the following applies:
  - The motor decelerates with OFF1 ramp to the low speed setpoint (p3398) when the low speed sensor positive direction (p3387) is triggered (level/edge triggered depending on p3395).
  - The motor stops with OFF1 ramp when the stop sensor positive direction (p3384) is triggered (level/edge triggered depending on p3394).
  - No motor reaction is triggered by the stop sensor negative direction (p3385) and low speed sensor negative direction (p3388) signals.
- With the movement in negative direction, the following applies:
  - The motor decelerates with OFF1 ramp to the low speed setpoint (p3398) when the low speed sensor negative direction (p3388) is triggered (level/edge triggered depending on p3395).
  - The motor stops with OFF1 ramp when the stop sensor negative direction (p3385) is triggered (level/edge triggered depending on p3394).
  - No motor reaction is triggered by the stop sensor positive direction (p3384) and low speed sensor positive direction (p3387) signals.
- Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384, p3385, p3387, and p3388.



## Parameters

Conveyor technology control parameters (Page 225)




## 6.9.2 Turntables

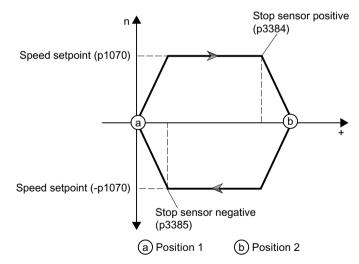
A turntable in a conveyor system redirects the material at the crossing of two conveyor lines. The turntable rotates from one end position to the other in the direction depending on the setting of the end position shutdown (p3392) and the polarity of the speed setpoint.

# 6.9.2.1 Turntable, two positions and one speed (p3393 = 5)

## Overview

With p3393 (conveyor technology application) set to 5, the converter enables a turntable in a conveyor system to rotate in either positive or negative direction with a fixed speed and stop at two dedicated positions. Two sensors are required to signal the limit positions for the motor to stop.

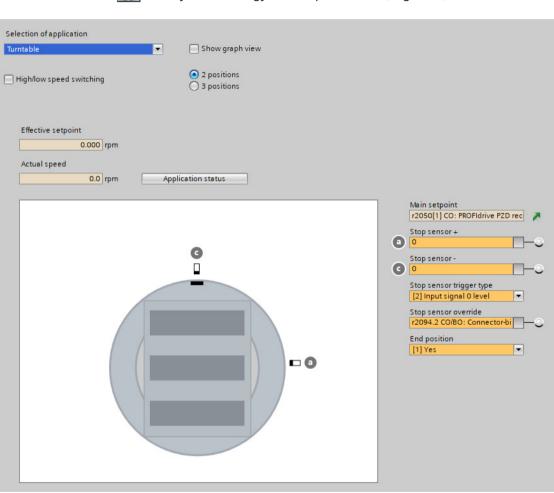



# Precondition

- You interconnect the signals of the sensors with the digital inputs of your choice.
- Depending on the specific application and mechanical setup, you must set end position shutdown active (p3392) to 1, so as to limit the turntable movement between the dedicated positions.

## **Function description**

- With the ON command, the motor accelerates to its speed setpoint (p1070). The turntable can rotate in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown deactivated (p3392 = 0), the following applies:
  - The motor stops with OFF1 ramp when either of the two stop sensors (p3384 and p3385) is triggered (level/edge triggered depending on p3394).
  - With the sensor evaluation type (p3394) set to 1 or 2 (level triggering), the motor starts again in either positive or negative direction when the level is canceled; with p3394 set to 3 or 4 (edge triggering), a new ON command must be initiated to start the motor again in either positive or negative direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384 and p3385.
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it stops only when the stop sensor positive direction (p3384) is triggered.
  - If the motor runs in negative direction, it stops only when the stop sensor negative direction (p3385) is triggered.
  - A new ON command must be initiated to start the motor again and the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 does not override the stop sensor signals p3384 and p3385.


End position shutdown activated (p3392 = 1)

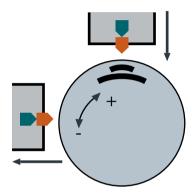


#### Note

With the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = 1 or 2) activated, once a stop sensor is triggered, the motor stops even if the level is canceled.

## Parameters



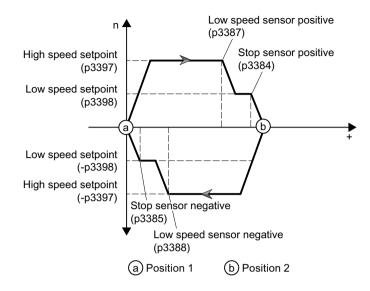

Conveyor technology control parameters (Page 225)

# 6.9.2.2 Turntable, two positions and two speeds (p3393 = 6)

## Overview

With p3393 (conveyor technology application) set to 6, the converter enables a turntable in a conveyor system to rotate in either positive or negative direction with variable speeds and stop at two dedicated positions.

Four sensors are required to signal the limit positions for the motor to stop or decelerate. In the mechanical setup of the conveyor system, you must install the stop sensor and low speed sensor in a line. So do the stop and low speed cams. Besides, when setting up the cams, the low speed cam must be longer than the stop cam.



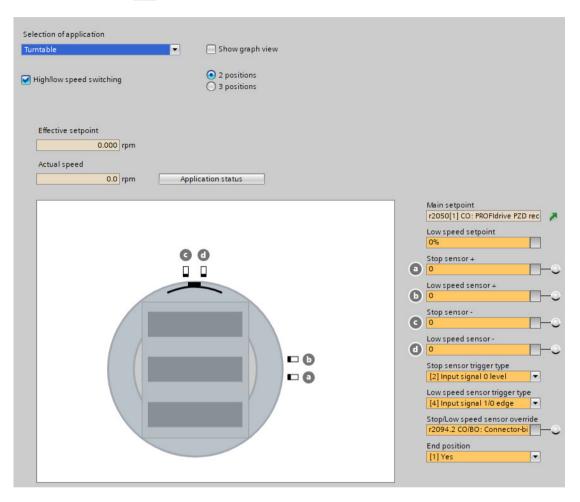

## Precondition

- You interconnect the signals of the sensors with the digital inputs of your choice.
- Depending on the specific application and mechanical setup, you must set end position shutdown active (p3392) to 1, so as to limit the turntable movement between the dedicated positions.

## **Function description**

- With the ON command, the motor accelerates to the high speed setpoint (p3397). The turntable can rotate in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown deactivated (p3392 = 0), the following applies:
  - The motor decelerates with OFF1 ramp to the low speed setpoint (p3398) when either of the two low speed sensors (p3387 and p3388) is triggered (level/edge triggered depending on p3395).
  - The motor stops with OFF1 ramp when either of the two stop sensors (p3384 and p3385) is triggered (level/edge triggered depending on p3394).
  - With the sensor evaluation type (p3394) set to 1 or 2 (level triggering), the motor starts again in either positive or negative direction when the level is canceled; with p3394 set to 3 or 4 (edge triggering), a new ON command must be initiated to start the motor again in either positive or negative direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384, p3385, p3387, and p3388.
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it decelerates/stops only when the low speed sensor positive direction (p3387)/stop sensor positive direction (p3384) is triggered.
  - If the motor runs in negative direction, it decelerates/stops only when the low speed sensor negative direction (p3388)/stop sensor negative direction (p3385) is triggered.
  - A new ON command must be initiated to start the motor again and the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 does not override the sensor signals p3384, p3385, p3387, and p3388.

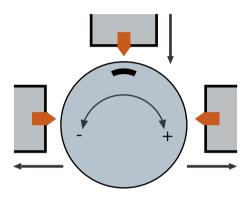



End position shutdown activated (p3392 = 1)

## Note

With the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = p3395 = 1 or 2) activated, once a stop or low speed sensor is triggered, the motor stops or goes to low speed even if the level is canceled.

## Parameters



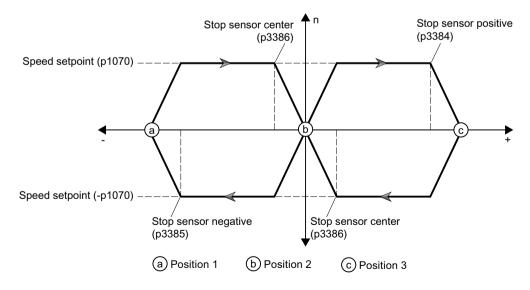



## 6.9.2.3 Turntable, three positions and one speed (p3393 = 7)

## Overview

With p3393 (conveyor technology application) set to 7, the converter enables a turntable in a conveyor system to rotate in either positive or negative direction with a fixed speed and stop at three dedicated positions. Three sensors are required to signal the limit positions for the motor to stop.




# Precondition

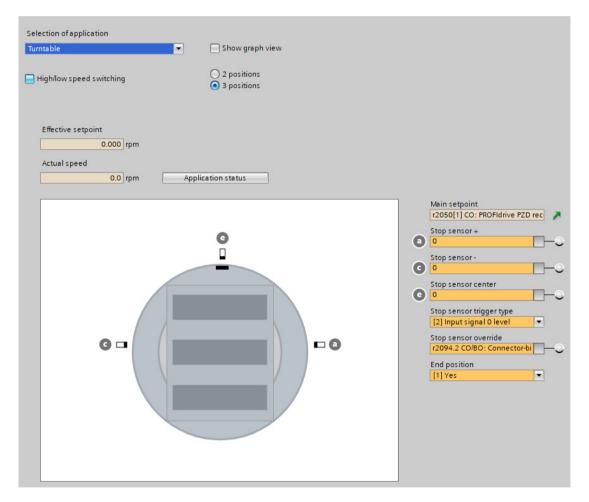
- You interconnect the signals of the sensors with the digital inputs of your choice.
- Depending on the specific application and mechanical setup, you must set end position shutdown active (p3392) to 1, so as to limit the turntable movement between the dedicated positions.

## **Function description**

- With the ON command, the motor accelerates to its speed setpoint (p1070). The turntable can rotate in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown deactivated (p3392 = 0), the following applies:
  - The motor stops with OFF1 ramp when any of the three stop sensors (p3384, p3385, and p3386) is triggered (level/edge triggered depending on p3394).
  - With the sensor evaluation type (p3394) set to 1 or 2 (level triggering), the motor starts again in either positive or negative direction when the level is canceled; with p3394 set to 3 or 4 (edge triggering), a new ON command must be initiated to start the motor again in either positive or negative direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384, p3385, and p3386.
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it stops only when the stop sensor center (p3386) or stop sensor positive direction (p3384) is triggered.
  - If the motor runs in negative direction, it stops only when the stop sensor center (p3386) or stop sensor negative direction (p3385) is triggered.
  - A new ON command must be initiated to start the motor again. If the motor stops upon triggering the stop sensor positive direction/negative direction, the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the stop sensor center signal p3386. In this case, the turntable can rotate directly from position 1 to position 3 and vice versa.

#### End position shutdown activated (p3392 = 1)



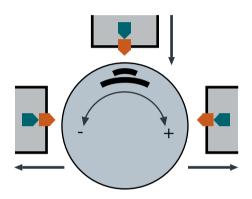

#### Note

The motor will have the following behavior with the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = 1 or 2) activated:

- Once a stop sensor at the positive or negative position is triggered, the motor stops even if the level is canceled.
- Once a stop sensor at the center position is triggered, the motor stops; if the level is cancelled, then the motor runs again.

#### Parameters

Conveyor technology control parameters (Page 225)

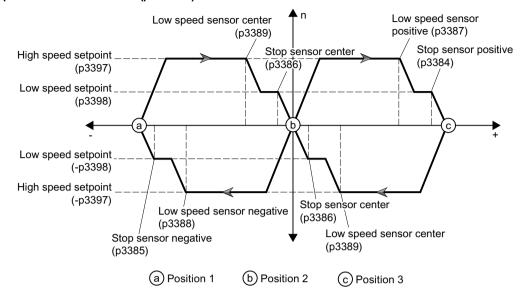



# 6.9.2.4 Turntable, three positions and two speeds (p3393 = 8)

## Overview

With p3393 (conveyor technology application) set to 8, the converter enables a turntable in a conveyor system to rotate in either positive or negative direction with variable speeds and stop at three dedicated positions.

Six sensors are required to signal the limit positions for the motor to stop or decelerate. In the mechanical setup of the conveyor system, you must install the stop sensor and low speed sensor in a line. So do the stop and low speed cams. Besides, when setting up the cams, the low speed cam must be longer than the stop cam.



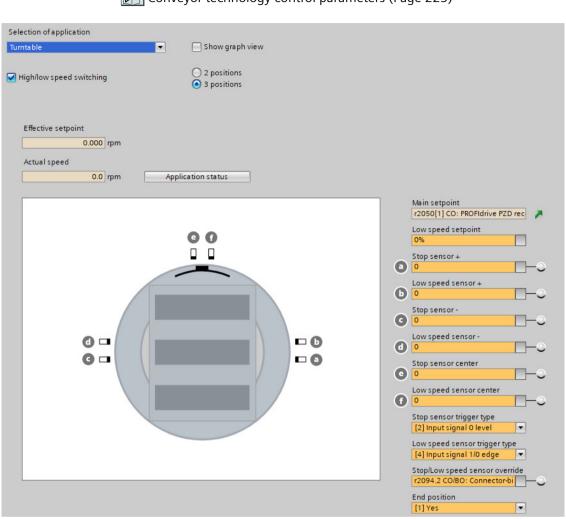

## Precondition

- You interconnect the signals of the sensors with the digital inputs of your choice.
- Depending on the specific application and mechanical setup, you must set end position shutdown active (p3392) to 1, so as to limit the turntable movement between the dedicated positions.

## **Function description**

- With the ON command, the motor accelerates to the high speed setpoint (p3397). The turntable can rotate in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown deactivated (p3392 = 0), the following applies:
  - The motor decelerates with OFF1 ramp to the low speed setpoint (p3398) when any of the three low speed sensors (p3387, p3388, and p3389) is triggered (level/edge triggered depending on p3395).
  - The motor stops with OFF1 ramp when any of the three stop sensors (p3384, p3385, and p3386) is triggered (level/edge triggered depending on p3394).
  - With the sensor evaluation type (p3394) set to 1 or 2 (level triggering), the motor starts again in either positive or negative direction when the level is canceled; with p3394 set to 3 or 4 (edge triggering), a new ON command must be initiated to start the motor again in either positive or negative direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384, p3385, p3386, p3387, p3388, and p3389.
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it decelerates/stops only when the low speed sensor positive direction or low speed sensor center (p3387 or p3389)/stop sensor positive direction or stop sensor center (p3384 or p3386) is triggered.
  - If the motor runs in negative direction, it decelerates/stops only when the low speed sensor negative direction or low speed sensor center (p3388 or p3389)/stop sensor negative direction or stop sensor center (p3385 or p3386) is triggered.
  - A new ON command must be initiated to start the motor again. If the motor stops upon triggering the stop sensor positive direction/negative direction, the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the stop sensor center and low speed sensor center signals p3386 and p3389. In this case, the turntable can rotate directly from position 1 to position 3 and vice versa.




#### End position shutdown activated (p3392 = 1)

#### Note

The motor will have the following behavior with the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = p3395 = 1 or 2) activated:

- Once a stop or low speed sensor at the positive or negative position is triggered, the motor stops and goes to low speed even if the level is canceled.
- Once a stop or low speed sensor at the center position is triggered, the motor stops and goes to low speed; if the level is cancelled, then the motor runs again.

## Parameters



Conveyor technology control parameters (Page 225)

# 6.9.3 Corner turntable lifts

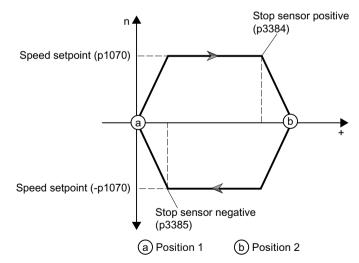
For transferring a load from one level to another, a corner turntable lift can be used to raise or lower the load.

# 6.9.3.1 Corner turntable lift, two positions and one speed (p3393 = 9)

## Overview

With p3393 (conveyor technology application) set to 9, the converter enables a corner turntable lift in a conveyor system to move up and down with a fixed speed and stop at two dedicated positions. Two sensors are required to signal the limit positions for the motor to stop.

| ······ | +<br>▲ |
|--------|--------|
|        |        |
|        | ļ      |
|        | -      |


## Precondition

- You interconnect the signals of the sensors with the digital inputs of your choice.
- To make sure that the corner turntable lift moves between the higher position and the lower position, the end position shutdown must be activated with p3392 set to 1.

## **Function description**

- With the ON command, the motor accelerates to its speed setpoint (p1070). The lift moves in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown deactivated (p3392 = 0), the following applies:
  - The motor stops with OFF1 ramp when either of the two stop sensors (p3384 and p3385) is triggered (level/edge triggered depending on p3394).
  - With the sensor evaluation type (p3394) set to 1 or 2 (level triggering), the motor starts again in either positive or negative direction when the level is canceled; with p3394 set to 3 or 4 (edge triggering), a new ON command must be initiated to start the motor again in either positive or negative direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384 and p3385.
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it stops only when the stop sensor positive direction (p3384) is triggered.
  - If the motor runs in negative direction, it stops only when the stop sensor negative direction (p3385) is triggered.
  - A new ON command must be initiated to start the motor again and the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 does not override the stop sensor signals p3384 and p3385.

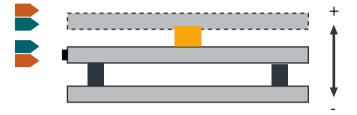
End position shutdown activated (p3392 = 1)



#### Note

With the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = 1 or 2) activated, once a stop sensor is triggered, the motor stops even if the level is canceled.

### Parameters


| Selection of application<br>Corner turntable lift (2 positions) | Show graph view    |       |                                                                                                                                                                                                                |
|-----------------------------------------------------------------|--------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High/low speed switching                                        |                    |       |                                                                                                                                                                                                                |
| Effective setpoint<br>0.000 rpm<br>Actual speed<br>0.0 rpm      | Application status |       |                                                                                                                                                                                                                |
|                                                                 |                    | • • • | Main setpoint<br>r2050[1] CO: PROFIdrive PZD rec<br>Stop sensor +<br>0<br>Stop sensor -<br>0<br>Stop sensor trigger type<br>[2] Input signal O level<br>r2094.2 CO/BO: Connector-bi<br>End position<br>[1] Yes |

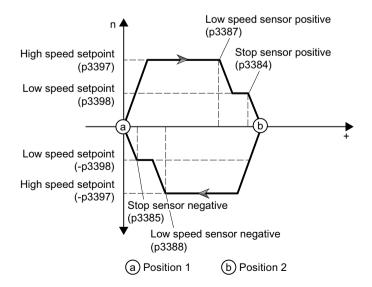
Conveyor technology control parameters (Page 225)

# 6.9.3.2 Corner turntable lift, two positions and two speeds (p3393 = 10)

## Overview

With p3393 (conveyor technology application) set to 10, the converter enables a corner turntable lift in a conveyor system to move up and down with variable speeds and stop at two dedicated positions. Four sensors are required to signal the limit positions for the motor to stop or decelerate.




# Precondition

- You interconnect the signals of the sensors with the digital inputs of your choice.
- To make sure that the corner turntable lift moves between the higher position and the lower position, the end position shutdown must be activated with p3392 set to 1.

#### **Function description**

- With the ON command, the motor accelerates to the high speed setpoint (p3397). The lift moves in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown deactivated (p3392 = 0), the following applies:
  - The motor decelerates with OFF1 ramp to the low speed setpoint (p3398) when either of the two low speed sensors (p3387 and p3388) is triggered (level/edge triggered depending on p3395).
  - The motor stops with OFF1 ramp when either of the two stop sensors (p3384 and p3385) is triggered (level/edge triggered depending on p3394).
  - With the sensor evaluation type (p3394) set to 1 or 2 (level triggering), the motor starts again in either positive or negative direction when the level is canceled; with p3394 set to 3 or 4 (edge triggering), a new ON command must be initiated to start the motor again in either positive or negative direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the sensor signals p3384, p3385, p3387, and p3388.
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it decelerates/stops only when the low speed sensor positive direction (p3387)/stop sensor positive direction (p3384) is triggered.
  - If the motor runs in negative direction, it decelerates/stops only when the low speed sensor negative direction (p3388)/stop sensor negative direction (p3385) is triggered.
  - A new ON command must be initiated to start the motor again and the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 does not override the sensor signals p3384, p3385, p3387, and p3388.

#### End position shutdown activated (p3392 = 1)

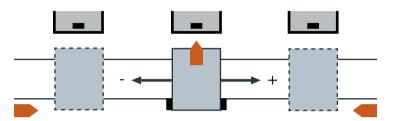


#### Note

With the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = p3395 = 1 or 2) activated, once a stop or low speed sensor is triggered, the motor stops or goes to low speed even if the level is canceled.

## Parameters

|                                                                                                                                                     | Conve        | eyor technology o  | control paramete | rs (Page 22                                                                                                                                                                                                                                                                                           | 5)                                                                                                                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|
| Selection of application<br>Corner turntable lift (2 position<br>High/low speed switching<br>Effective setpoint<br>0.000 r<br>Actual speed<br>0.0 r | ns) <b>v</b> | eyor technology of | control paramete | Main sett<br>r2050[1]<br>Low spec<br>0%<br>Stop sen<br>0<br>Low spec<br>0<br>C<br>0<br>Low spec<br>0<br>C<br>0<br>Low spec<br>0<br>C<br>0<br>Low spec<br>1<br>D<br>0<br>Low spec<br>1<br>Low spec<br>1<br>C<br>0<br>C<br>0<br>C<br>0<br>C<br>0<br>C<br>0<br>C<br>0<br>C<br>0<br>C<br>0<br>C<br>0<br>C | point<br>] CO: PROFIdrive PZD rec<br>ed setpoint<br>usor +<br>ed sensor +                                                                |  |
| 1                                                                                                                                                   |              |                    |                  | <ul> <li>0</li> <li>Stop sen</li> <li>0</li> <li>Low spec</li> <li>0</li> <li>Stop sen</li> <li>[2] Input</li> <li>Low spec</li> <li>[4] Input</li> <li>Stop/Low</li> </ul>                                                                                                                           | ed sensor -<br>ed sensor -<br>isor trigger type<br>t signal 0 level<br>signal 1/0 edge<br>v speed sensor override<br>CO/BO: Connector-bi |  |


# 6.9.4 Travelling trolleys

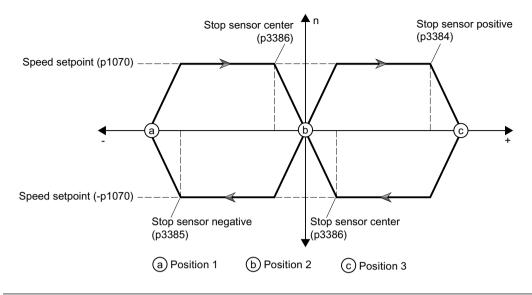
Travelling trolleys travel along a fixed path with specific positions for loading and discharge.

# 6.9.4.1 Travelling trolley, one speed (p3393 = 11)

#### Overview

With p3393 (conveyor technology application) set to 11, the converter enables a travelling trolley to move in either positive or negative direction with a fixed speed and stop at dedicated positions. Three sensors are required to signal the limit positions for the motor to stop.




#### Precondition

- You interconnect the signals of the sensors with the digital inputs of your choice.
- The end position shutdown must be activated with p3392 set to 1 to avoid damage to the devices.
- The controlling PLC can activate/deactivate the sensor bypass signal (p3390) and define different positions among which the trolley can move.

## **Function description**

- With the ON command, the motor accelerates to its speed setpoint (p1070). The trolley moves in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it stops only when the stop sensor center (p3386) or stop sensor positive direction (p3384) is triggered.
  - If the motor runs in negative direction, it stops only when the stop sensor center (p3386) or stop sensor negative direction (p3385) is triggered.
  - A new ON command must be initiated to start the motor again. If the motor stops upon triggering the stop sensor positive direction/negative direction, the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the stop sensor center signal p3386.

#### End position shutdown activated (p3392 = 1)



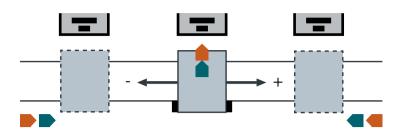
#### Note

The motor will have the following behavior with the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = 1 or 2) activated:

- Once a stop sensor at the positive or negative position is triggered, the motor stops even if the level is canceled.
- Once a stop sensor at the center position is triggered, the motor stops; if the level is cancelled, then the motor runs again.

# Parameters



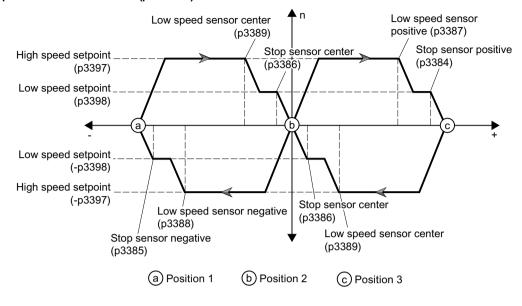

| Selection of application Trolley  Show graph view                                   |                                                                           |
|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| High/low speed switching                                                            |                                                                           |
| Effective setpoint       0.000     rpm       Actual speed     0.0       0.0     rpm |                                                                           |
|                                                                                     | Main setpoint<br>[r2050[1] CO: PROFIdrive PZD rec ]<br>Stop sensor +<br>0 |
| G 0                                                                                 |                                                                           |

# 6.9.4.2 Travelling trolley, two speeds (p3393 = 12)

## Overview

With p3393 (conveyor technology application) set to 12, the converter enables a travelling trolley to move in either positive or negative direction with variable speeds and stop at dedicated positions.

Six sensors are required to signal the limit positions for the motor to stop or decelerate. In the mechanical setup of the conveyor system, the stop sensor and low speed sensor on the travelling trolley must be installed in a line. So do the stop and low speed cams on the corresponding conveyor lines. Besides, when setting up the cams, the low speed cam must be longer than the stop cam.




## Precondition

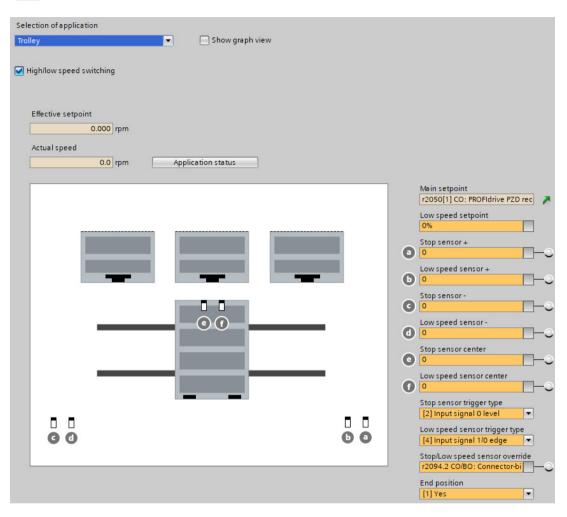
- You interconnect the signals of the sensors with the digital inputs of your choice.
- The end position shutdown must be activated with p3392 set to 1 to avoid damage to the devices.
- The controlling PLC can activate/deactivate the sensor bypass signal (p3390) and define different positions among which the trolley can move.

#### **Function description**

- With the ON command, the motor accelerates to the high speed setpoint (p3397). The trolley moves in either positive or negative direction depending on the setting of p1113:
  - p1113 = 0: positive direction
  - p1113 = 1: negative direction
- With the end position shutdown activated (p3392 = 1), the following applies:
  - If the motor runs in positive direction, it decelerates/stops only when the low speed sensor positive direction or low speed sensor center (p3387 or p3389)/stop sensor positive direction or stop sensor center (p3384 or p3386) is triggered.
  - If the motor runs in negative direction, it decelerates/stops only when the low speed sensor negative direction or low speed sensor center (p3388 or p3389)/stop sensor negative direction or stop sensor center (p3385 or p3386) is triggered.
  - A new ON command must be initiated to start the motor again. If the motor stops upon triggering the stop sensor positive direction/negative direction, the new movement is only possible in the opposite direction.
  - Setting the sensor bypass signal (p3390) to 1 overrides the stop sensor center and low speed sensor center signals p3386 and p3389.



#### End position shutdown activated (p3392 = 1)


#### Note

The motor will have the following behavior with the end position shutdown (p3392 = 1) and level-triggered sensor signals (p3394 = p3395 = 1 or 2) activated:

- Once a stop or low speed sensor at the positive or negative position is triggered, the motor stops and goes to low speed even if the level is canceled.
- Once a stop or low speed sensor at the center position is triggered, the motor stops and goes to low speed; if the level is cancelled, then the motor runs again.

## Parameters

Conveyor technology control parameters (Page 225)



# 6.9.5 Conveyor technology control parameters

| Parameter | Description                  | Setting                                                                                                                          |
|-----------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| r0722.025 | CO/BO: Digital inputs status | Interconnect the signals of the sensors to the digi-<br>tal inputs as desired.                                                   |
| p1070[0n] | CI: Main setpoint            | Sets the signal source for the main setpoint.                                                                                    |
| p1071[0n] | CI: Main setpoint scaling    | Sets the signal source for scaling the main setpoint.<br>Factory setting: 1                                                      |
| p1075[0n] | CI: Supplementary setpoint   | Sets the signal source for the supplementary set-<br>point. Note that the supplementary setpoint adds<br>to both p3397 and p3398 |

# Advanced commissioning

6.9 Conveyor technology control functions (for G115D PROFINET and AS-i variants only)

| Parameter | Description                                                     | Setting                                                                                                                 |
|-----------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| p1076[0n] | CI: Supplementary setpoint scaling                              | Sets the signal source for scaling the supplementa-<br>ry setpoint.                                                     |
|           |                                                                 | Factory setting: 1                                                                                                      |
| p1113[0n] | BI: Setpoint inversion                                          | Signal source for inverting the setpoint.                                                                               |
|           |                                                                 | 1 signal: Invert setpoint                                                                                               |
|           |                                                                 | The factory setting depends on the converter field-<br>bus interface.                                                   |
| p3384     | BI: Stop sensor positive direction signal source                | Sets the signal source of the stop sensor for the positive direction.                                                   |
|           |                                                                 | Factory setting: 0                                                                                                      |
| p3385     | BI: Stop sensor negative direction signal source                | Sets the signal source of the stop sensor for the negative direction.                                                   |
|           |                                                                 | Factory setting: 0                                                                                                      |
| p3386     | BI: Stop sensor center signal source                            | Sets the signal source of the stop sensor for the middle position.                                                      |
|           |                                                                 | Factory setting: 0                                                                                                      |
| p3387     | BI: Low speed sensor positive direc-<br>tion signal source      | Sets the signal source of the low speed sensor for the positive direction.                                              |
|           |                                                                 | Factory setting: 0                                                                                                      |
| p3388     | BI: Low speed sensor negative di-<br>rection signal source      | Sets the signal source of the low speed sensor for the negative direction.                                              |
|           |                                                                 | Factory setting: 0                                                                                                      |
| p3389     | BI: Low speed sensor center signal source                       | Sets the signal source of the low speed sensor for the middle position.                                                 |
|           |                                                                 | Factory setting: 0                                                                                                      |
| p3390     | BI: Stop/low speed sensor bypass signal source                  | Sets the signal source for bypassing the stop and low speed sensors.                                                    |
|           |                                                                 | 1 signal: The stop and low speed sensors are not taken into account.                                                    |
|           |                                                                 | The factory setting depends on the converter field-<br>bus interface.                                                   |
| p3391     | BI: Stop/low speed sensor bypass manual operation signal source | Sets the signal source for bypassing the stop and low speed sensors in the "manual operation" mode.                     |
|           |                                                                 | Factory setting: 8559.4                                                                                                 |
| p3392     | End position shutdown activation                                | = 0: End position shutdown deactivated. Travel can be continued in both directions.                                     |
|           |                                                                 | = 1: End position shutdown activated (factory set-<br>ting). Travel can only be continued in the opposite<br>direction. |
| p3393     | Conveyor technology application                                 | Selects the conveyor technology application.                                                                            |
|           | selection                                                       | Factory setting: 0                                                                                                      |
| p3394     | Stop sensor evaluation type                                     | = 1: Input signal high level triggered                                                                                  |
|           |                                                                 | = 2: Input signal low level triggered (factory setting)                                                                 |
|           |                                                                 | = 3: Input signal 0→1 edge triggered                                                                                    |
|           |                                                                 | = 4: Input signal 1→0 edge triggered                                                                                    |

6.10 Switching over the drive control (command data set)

| Parameter | Description                                        | Setting                                                                                                                                                                      |
|-----------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p3395     | Low speed sensor evaluation type                   | See p3394.                                                                                                                                                                   |
|           |                                                    | Factory setting: 4                                                                                                                                                           |
| r3396.016 | CO/BO: Conveyor technology appli-<br>cation status | Displays the status of the conveyor technology application.                                                                                                                  |
| p3397     | CI: Rapid traverse setpoint signal                 | Sets the signal source of the high speed setpoint.                                                                                                                           |
|           | source                                             | The setpoint for the input is interconnected with the main setpoint p1070.                                                                                                   |
| p3398     | CI: Low speed setpoint signal source               | Sets the signal source of the low speed setpoint.<br>The connector input can be interconnected with a<br>fixed setpoint (p1001 and following) or potentiom-<br>eter (r0752). |
|           |                                                    | Factory setting: 0                                                                                                                                                           |
| r3399     | CO: Setpoint active                                | Displays the active setpoint of the conveyor tech-<br>nology application.                                                                                                    |

For more information about the conveyor control function, refer to the parameter list and function diagrams 7040 to 7051 in the List Manual.

# 6.10 Switching over the drive control (command data set)

#### Overview




Several applications require the option of switching over the control authority to operate the converter.

Example: The motor is to be operable either from a central control via the fieldbus or via the local digital inputs of the converter.

## **Function description**

#### Command data set (CDS)



This means that you can set the converter control in various ways and toggle between the settings. For instance, as described above, the converter can either be operated via a fieldbus or via its digital inputs.

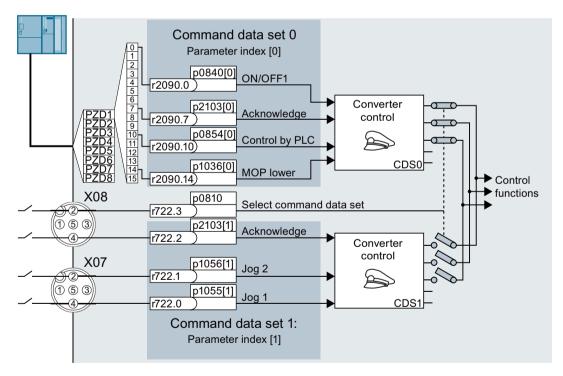
The settings in the converter, which are assigned to a specific master control, are termed the command data set.

You select the command data set using parameter p0810. To do this, you must interconnect parameter p0810 with a control command of your choice, e.g. a digital input.

6.10 Switching over the drive control (command data set)

## Changing the number of command data sets

- 1. Set p0010 = 15.
- 2. The number of command data sets is configured with p0170.
- 3. Set p0010 = 0.


You have changed the number of command data sets.

## Copying command data sets

- 1. Set p0809[0] to the number of the command data set whose settings you wish to copy (source).
- 2. Set p0809[1] to the number of the command data set in which you wish to copy the settings.
- 3. Set p0809[2] = 1 to start the copying.
- 4. The converter sets p0809[2] = 0 after the copying finishes.

You have copied the settings of a command data set into another command data set.  $\hfill\square$ 

## Example



As in the example above, you obtain the interconnection if you configured the interfaces of the converter accordingly.

An overview of all the parameters that belong to the command data sets is provided in the List Manual.

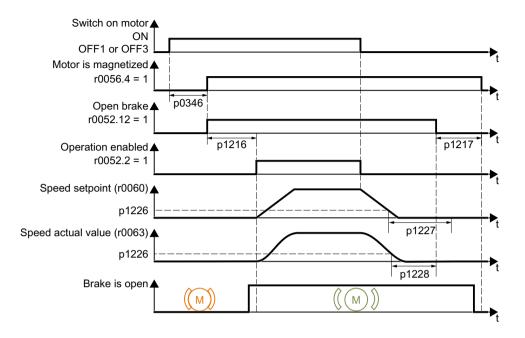
### Note

The converter requires approximately 4 ms to switch over the command data set.

### Parameters

| Parameter | Description                                | Setting                                                           |
|-----------|--------------------------------------------|-------------------------------------------------------------------|
| p0010     | Drive commissioning parameter fil-         | Set $p0010 = 15$ to change the data set.                          |
|           | ter                                        | Factory setting: 1                                                |
| r0050.01  | CO/BO: Command Data Set CDS ef-<br>fective | Displays the number of the currently active com-<br>mand data set |
| p0170     | Number of command data sets                | p0170 = 2, 3 or 4                                                 |
|           | (CDS)                                      | Factory setting: 2                                                |
| p0809[02] | Copy command data set CDS                  | [0] Source command data set                                       |
|           |                                            | [1] Target command data set                                       |
|           |                                            | [2] $0 \rightarrow 1$ : Starts the copy operation                 |
|           |                                            | Factory setting: 0                                                |
| p0810     | BI: Command data set selection             | Sets the signal source to select CDS bit 0.                       |
|           | CDS bit 0                                  | Factory setting: dependent upon the converter                     |
| p0811     | BI: Command data set selection             | Sets the signal source to select CDS bit 1.                       |
|           | CDS bit 1                                  | Factory setting: 0                                                |

# 6.11 Motor holding brake


## Overview



The motor holding brake holds the motor in position when it is switched off.

When the "Motor holding brake" function is correctly set, the motor remains switched on as long as the motor holding brake is open. The converter only switches the motor off when the motor holding brake is closed.

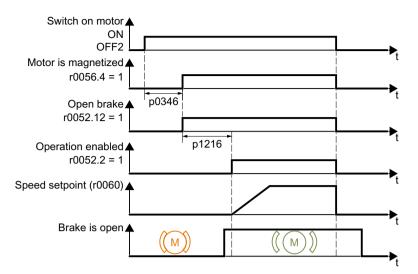
# **Function description**



#### After the ON command

- 1. With the ON command, the converter switches the motor on.
- 2. At the end of the "motor excitation build-up time" (p0346), the converter issues the command to open the brake.
- 3. The converter keeps the motor at a standstill until the "motor holding brake opening time" p1216 has ended.

The motor holding brake must be opened within time p1216.


4. The converter accelerates the motor to the speed setpoint.

#### After the OFF1 or OFF3 command

- 1. The converter brakes the motor down to a standstill using the OFF1 or OFF3 command.
- 2. When braking, the converter compares the speed setpoint and the actual speed with the "standstill detection speed threshold" p1226:
  - Speed setpoint < p1226: the "standstill detection monitoring time" p1227 starts
  - Current speed < p1226: the "pulse cancellation deceleration time" p1228 starts
- 3. When the first of the two times (p1227 or p1228) has elapsed, the converter issues the command to close the brake.
- 4. After the "motor holding brake closing time" p1217, the converter switches off the motor. The motor holding brake must close within the time p1217.

#### After the OFF2 command

After the OFF2 command, the converter issues the signal to immediately close the motor holding brake, irrespective of the motor speed.



# Commissioning a motor holding brake

#### Precondition

The motor holding brake is connected to the converter.



# WARNING

#### Load can fall if the motor holding brake function is incorrectly set

For applications with a suspended load, such as cranes and elevators, there is a danger to life if the "Motor holding brake" function is not completely set or is incorrectly set.

- When commissioning the motor holding brake function, secure any suspended loads, e.g. by applying the following measures:
  - Lower the load down to the floor.
  - Secure the dangerous area so that nobody can inadvertently enter it.
- Set the motor holding brake function according to the following description.
- After commissioning, check that the motor holding brake and the motor control function reliably.

#### Procedure

- Set p1215 = 1. The motor holding brake function is enabled.
- 2. Check the magnetizing time p0346. The magnetizing time must be greater than zero. The converter assigns the magnetizing time when it is being commissioned.
- 3. Find out the mechanical opening and closing times from the technical data of the motor holding brake.
  - Depending on the brake size, brake opening times lie between 25 ms and 500 ms.
  - Depending on the brake size, brake closing times lie between 15 ms and 300 ms.

- 4. Set the following parameters in the converter suitably for the mechanical opening and closing times of the motor holding brake:
  - $p1216 \ge$  mechanical opening time of the motor holding brake
  - p1217 > mechanical closing time of the motor holding brake
- 5. Switch on the motor.
- 6. Check the acceleration behavior of the drive immediately after the motor has been switched on:
  - If the motor holding brake opens too late, the converter will accelerate the motor suddenly against the closed motor holding brake.
     Set p1216 larger.
  - If the motor waits too long before accelerating after the motor holding brake has opened, reduce p1216.
     For applications involving a pulling load, e.g. lifting gear/crane, if p1216 is too long, then the load can briefly sag/sink after the motor holding brake is opened. If you reduce p1216, then the amount that the load sags/sinks is reduced.
- 7. If the load sags after switching on the motor, then you must increase the motor torque when opening the motor holding brake. Depending on the control mode, you must set different parameters:
  - U/f control (p1300 = 0 to 3): Increase p1310 in small steps. Increase p1351 in small steps.
  - Vector control (p1300 ≥ 20): Increase p1475 in small steps.
- 8. Switch off the motor.
- 9. Check the behavior of the drive immediately after the motor has been switched off:
  - If the motor holding brake closes too late, the load briefly sags before the motor holding brake closes.
    - Set a larger value for p1217.
  - If the motor waits too long before switching off after the motor holding brake has closed, reduce p1217.

You have commissioned the motor holding brake function.

# Parameters

# **Basic settings**

| Parameter | Description                                         | Setting                                                                          |
|-----------|-----------------------------------------------------|----------------------------------------------------------------------------------|
| p1215     | Enable motor holding brake                          | 0: Motor holding brake locked (factory setting)                                  |
|           |                                                     | 1: Motor holding brake just like the sequence con-<br>trol                       |
|           |                                                     | 2: Motor holding brake permanently open                                          |
|           |                                                     | 3: Motor holding brake just like the sequential con-<br>trol, connected via BICO |
| p1216     | Motor holding brake opening time<br>[s]             | p1216 > braking signal relay runtimes + brake re-<br>lease time                  |
|           |                                                     | Factory setting: 0.1                                                             |
| p1217     | Motor holding brake closing time [s]                | p1217 > braking signal relay runtimes + brake clos-<br>ing time                  |
|           |                                                     | Factory setting: 0.1                                                             |
| r0052.12  | CO/BO: Status word 1: motor hold-<br>ing brake open | -                                                                                |

# Advanced settings

| Parameter | Description                                    | Setting                                                                                                                                              |
|-----------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| p0346     | Motor excitation build-up time [s]             | During this time the asynchronous motor is mag-<br>netized. The converter calculates this parameter<br>using p0340 = 1 or 3.                         |
|           |                                                | Factory setting: 0                                                                                                                                   |
| p0855     | BI: Unconditionally release holding brake      | Sets the signal source for the command "uncondi-<br>tionally open holding brake".                                                                    |
|           |                                                | Factory setting: 0                                                                                                                                   |
| p0858     | BI: Unconditionally close holding brake        | Sets the signal source for the command "uncondi-<br>tionally close holding brake".                                                                   |
|           |                                                | Factory setting: 0                                                                                                                                   |
| p1226     | Threshold for zero speed detection<br>[rpm]    | When braking with OFF1 or OFF3, if the speed falls<br>below this threshold, standstill is detected and the<br>monitoring time p1227 or p1228 starts. |
|           |                                                | Factory setting: 20                                                                                                                                  |
| p1227     | Zero speed detection monitoring time [s]       | Sets the monitoring time for the standstill identification.                                                                                          |
|           |                                                | Factory setting: 300                                                                                                                                 |
| p1228     | Pulse suppression delay time [s]               | Sets the delay time for pulse suppression.                                                                                                           |
|           |                                                | Factory setting: 0.01                                                                                                                                |
| p1351     | CO: Motor holding brake starting frequency [%] | Sets the frequency set value at the slip compensa-<br>tion output when starting with motor holding<br>brake.                                         |
|           |                                                | With p1351 > 0, slip compensation is automatically switched on.                                                                                      |
|           |                                                | Factory setting: 0                                                                                                                                   |

# 6.12 Free function block

| Parameter | Description                                                       | Setting                                                                                                                          |
|-----------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| p1352     | CI: Motor holding brake starting frequency signal source          | Sets the signal source for the frequency set value at<br>the slip compensation output when starting with<br>motor holding brake. |
|           |                                                                   | Factory setting: 1351                                                                                                            |
| p1475     | CI: Speed controller torque setting value for motor holding brake | Sets the signal source for the torque set value when starting with motor holding brake.                                          |
|           |                                                                   | Factory setting: 0                                                                                                               |

# 6.12 Free function block

## Overview



The free function blocks permit configurable signal processing in the converter.

The following free function blocks are available:

- AND, OR, XOR, and NOT logic
- RSR (RS flip-flop), DSR (D flip-flop) flip-flops
- Timers MFP (pulse generator), PCL (pulse shortening), PDE (ON delay), PDF (OFF delay), and PST (pulse stretching)
- ADD (adder), SUB (subtractor), MUL (multiplier), DIV (divider), AVA (absolute value generated), NCM (comparator), and PLI (polyline) arithmetic functions
- LIM (limiter), PT1 (smoothing), INT (integrator), DIF (differentiator) controllers
- NSW (analog) BSW (binary) switches
- LVM limit value monitoring

The number of free function blocks in the converter is limited. You can only use a function block once. The converter has 3 adders, for instance. If you have already configured three adders, then no other adders are available.

## **Further information**

Further information about the application description for the free function blocks is provided on the Internet:

**FAQ** (https://support.industry.siemens.com/cs/ww/en/view/85168215)

# 6.13 Selecting physical units

# 6.13.1 Motor standard

## Selection options and parameters involved



The converter represents the motor data corresponding to motor standard IEC or NEMA in different system units: SI units or US units.

Parame-Designation Motor standard IEC/NEMA, p0100 = ter **0**<sup>1)</sup> 2 1 IEC motor NEMA motor NEMA motor 50 Hz, SI units 60 Hz, US units 60 Hz, SI units r0206 Power unit rated power kW hp kW p0219 Braking resistor braking power kW hp kW p0307 kW kW Rated motor power hp p0316 Nm/A lbf ft/A Nm/A Motor torgue constant r0333 Rated motor torgue Nm lbf ft Nm p0341 Motor moment of inertia kgm<sup>2</sup> lb ft<sup>2</sup> kgm<sup>2</sup> p0344 Motor weight kg Lb kg r0394 kW Rated motor power hp kW lb ft<sup>2</sup> r1493 Total moment of inertia, scaled kgm<sup>2</sup> kgm<sup>2</sup>

It is only possible to change the motor standard during quick commissioning.

<sup>1)</sup> Factory setting

# 6.13.2 System of units

Some physical units depend on the system of units selected (SI or US), for example the power [kW or hp] or the torque [Nm or lbf ft]. You can select in which system of units the converter represents its physical values.

# Options when selecting the system of units

The following options apply when selecting the system of units:

- p0505 = 1: System of units SI (factory setting) Torque [Nm], power [kW], temperature [°C or K]
- p0505 = 2: Referred system of units/SI Represented as [%]
- p0505 = 3: US system of units Torque [lbf ft], power [hp], temperature [°F]
- p0505 = 4: System of units, referred/US Represented as [%]

#### 6.13 Selecting physical units

## **Special features**

The values for p0505 = 2 and for p0505 = 4 - represented in the converter - are identical. However, the reference to SI or US units is required for internal calculations and to output physical variables.

For variables, which cannot be represented as [%], then the following applies:  $p0505 = 1 \triangleq p0505 = 2$  and  $p0505 = 3 \triangleq p0505 = 4$ .

In the case of variables whose units are identical in the SI system and US system, and which can be displayed as a percentage, the following applies:  $p0505 = 1 \triangleq p0505 = 3$  and  $p0505 = 2 \triangleq p0505 = 4$ .

### **Reference variables**

There is a reference variable in the converter for most parameters with physical units. When the referred representation [%] is set, then the converter scales the physical variables based on the particular reference variable.

When the reference variable changes, then the significance of the scaled value also changes. Example:

- Reference speed = 1500 rpm  $\rightarrow$  fixed speed = 80 %  $\triangleq$  1200 rpm
- Reference speed = 3000 rpm → fixed speed = 80 % ≜ 2400 rpm

For each parameter you can find the associated reference variable for scaling in the List Manual. Example: r0065 is scaled with reference variable p2000.

If scaling is not specified in the List Manual, then the converter always represents/displays the parameter unscaled (not normalized).

#### Groups of units

The parameters associated with the selection of a physical unit, belong to different groups of units.

You can find the associated group of units in the List Manual for each parameter. Example: r0333 belongs to unit group 7\_4.

An overview of the unit groups and the possible physical units can also be found in the List Manual.

# 6.13.3 Technological unit of the technology controller

### Options when selecting the technological unit

p0595 defines in which technological unit the input and output variables of the technology controller are calculated, e.g. [bar], [m<sup>3</sup>/min] or [kg/h].

#### **Reference variable**

p0596 defines the reference variable of the technological unit for the technology controller.

6.13 Selecting physical units

# Unit group

Parameters involved with p0595 belong to unit group 9\_1.

Further information on this topic is provided in the List Manual.

Cverview of the manuals (Page 592)

# **Special features**

You must optimize the technology controller after changing p0595 or p0596.

# 6.13.4 Setting the system of units and technology unit

# Setting using Startdrive

## Precondition

You are offline with Startdrive.

#### Procedure

- 1. In the project, select "Parameter".
- 2. Select "Units".

| 🔻 湿 G115D_PN [G115D PN] | <ul> <li>Basic settings</li> </ul>        | Units             |                                                           |
|-------------------------|-------------------------------------------|-------------------|-----------------------------------------------------------|
| Device configuration    | Data sets                                 |                   |                                                           |
| 🗓 Online & diagnostics  | Units                                     |                   |                                                           |
| 🚰 Parameter             | Refere 2                                  | System of units : | [1] SI system of units                                    |
| t Commissio             |                                           |                   |                                                           |
| 🕨 🔄 Traces              | Inputs/ou                                 |                   | Rounding errors can occur wr<br>switching over the units! |
|                         | Setpoint channel                          |                   |                                                           |
|                         | <ul> <li>Operating mode</li> </ul>        | Technology unit:  | [1]%                                                      |
|                         | Drive functions                           | reenhology unit.  |                                                           |
|                         | <ul> <li>Application functions</li> </ul> | Motor standard:   | [0] IEC-Motor (50 Hz, SI units)                           |
|                         | Communication                             |                   |                                                           |
|                         | Interconnections                          |                   |                                                           |

- 3. Select the system of units.
- 4. Select the technological unit of the technology controller.
- 5. Save your settings.
- 6. Go online. The converter signals that offline, other units and process variables are set than in the converter itself.
- 7. Accept these settings in the converter.

You have selected the motor standard and system of units.  $\ensuremath{\square}$ 

# 6.14 Safe Torque Off (STO) safety function



The Operating Instructions describes how to commission the STO safety function as basic function for control via a fail-safe digital input.

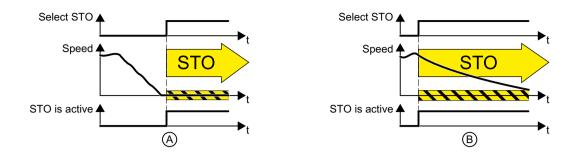
For the G115D PROFINET variant, you can also control the STO safety function via PROFIsafe. For more information, see the "Safety Integrated" Function Manual.

Overview of the manuals (Page 592)

# 6.14.1 Function description

A converter with active STO function prevents energy supply to the motor. The motor can no longer generate torque at the motor shaft.

Consequently, the STO function prevents the starting of an electrically-driven machine component.




Principle of operation of STO

|    | Safe Torque Off (STO)                                                                                                    | Standard converter functions linked with STO                      |
|----|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1. | The converter recognizes the selection of STO via<br>a safety-relevant input or via the PROFIsafe safe<br>communication. |                                                                   |
| 2. | The converter interrupts the energy supply to the motor.                                                                 | If you use a motor holding brake, the converter closes the brake. |
| 3. | The converter signals that "STO is active" via a safety-relevant output or via the PROFIsafe safe communication.         |                                                                   |

## Functionality of STO when the motor is at standstill (A) and rotating (B)

If the motor is still rotating (B) when STO is selected, then it coasts down to standstill.



# The STO safety function is standardized

The STO function is defined in IEC/EN 61800-5-2:

"[...] [The converter] does not supply any energy to the motor which can generate a torque (or for a linear motor, a force)."

 $\Rightarrow$  The STO converter function is in conformance to IEC/EN 61800-5-2.

## The distinction between Emergency Off and Emergency Stop

"Emergency Off" and "Emergency Stop" are commands that minimize different risks in the machine or plant.

The STO function is suitable for achieving an emergency stop but not an emergency off.

| Risk:                     | Risk of electric shock:                               | Risk of unexpected motion:                     |  |
|---------------------------|-------------------------------------------------------|------------------------------------------------|--|
|                           |                                                       |                                                |  |
| Measure to minimize risk: | Safe switch off                                       | Safely stop and safely prevent re-<br>starting |  |
| IISK.                     | Switching off the electric power supply               | starting                                       |  |
|                           | for the installation, either completely or partially. | Stopping or preventing the dangerous movement  |  |
| Command:                  | Emergency Off                                         | Emergency Stop                                 |  |

| Classic solution:                                                      | Switch off the power supply:                                                                        | Switch off the drive power supply:                                                                                                 |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                        | <sup>↓↓↓</sup><br>●<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓<br>↓ |                                                                                                                                    |
| Solution with the STO<br>safety function inte-<br>grated in the drive: | STO is not suitable for safely switching<br>off an electric voltage.                                | Select STO:                                                                                                                        |
|                                                                        |                                                                                                     | converter supply voltage as well. How-<br>ever, switching off the voltage is not<br>required as a risk-reduction measure-<br>ment. |

# Application examples for the STO function

The STO function is suitable for applications where the motor is already at a standstill or will come to a standstill in a short, safe period of time through friction. STO does not shorten the runon of machine components with high inertia.

| Examples                                                                                                  | Possible solution                                                       |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| When the Emergency Stop button is pressed, a sta-<br>tionary motor should not unintentionally start.      | • Wire the Emergency Stop button to a fail-safe input of the converter. |
|                                                                                                           | • Select STO via the fail-safe input.                                   |
| A central emergency stop button must prevent the<br>unintentional acceleration of several motors that are | • Evaluate the Emergency Stop button in a cen-<br>tral control.         |
| at a standstill.                                                                                          | • Select STO via PROFIsafe.                                             |

## Prerequisite for STO use

In order to use the STO safety function, the machine manufacturer should have already performed a risk assessment, e.g. in compliance with EN ISO 1050, "Safety of machinery - Principles of risk assessment". The risk assessment must confirm that the converter is permitted for use in accordance with SIL 2 or PL d.

# 6.14.2 Commissioning STO

## 6.14.2.1 Commissioning tool

We recommend that you commission the safety functions using a commissioning tool (e.g. Startdrive or SINAMICS G120 Smart Access).

Commissioning tools (Page 112)

The following sections only introduce the commissioning process of Startdrive as examples. For more information on that of the SINAMICS G120 Smart Access, see the SINAMICS G120 Smart Access Operating Instructions.

Cverview of the manuals (Page 592)

## 6.14.2.2 Safety function password

#### Overview

The password protects the settings of the safety function from being changed by unauthorized persons.

#### **Function description**

#### Do you have to assign a password?

You do not have to assign a password.

The machine manufacturer decides whether or not a password is required.

The probabilities of failure (PFH) and certification of the safety functions also apply without password.

#### What do I do if I lose the password?

You have forgotten the password, however, you would nevertheless like to change the setting of the safety functions.

#### Procedure

- 1. Create a new project for the converter using Startdrive. Leave all the factory setting in the project.
- 2. Load the project in the converter. After loading, the converter has the factory settings.
- 3. Recommission the converter.

You can obtain more information or learn about alternative procedures from Technical Support.

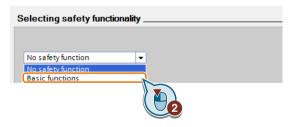
# Parameters

| Parameter | Description                | Setting                                               |
|-----------|----------------------------|-------------------------------------------------------|
| p9761     | SI password input          | Enters the Safety Integrated password.                |
|           |                            | 0: No password set (factory setting)                  |
|           |                            | 1 FFFF FFFF: Password is set                          |
| p9762     | SI password new            | Enters a new Safety Integrated password.              |
| p9763     | SI password acknowledgment | Acknowledges the new Safety Integrated pass-<br>word. |

# 6.14.2.3 Configuring a safety function

## Overview

To ensure protection against unauthorized changes, it is recommended that you configure the safety function settings.


# **Function description**

#### Procedure

1. Select "Select safety functionality".

| <ul> <li>Basic settings</li> </ul>    | Selecting safety functionality                     |
|---------------------------------------|----------------------------------------------------|
| Inputs/outputs                        | Selecting safety functionality                     |
| Setpoint channel                      |                                                    |
| Operating mode                        | No. Co. Co. La |
| <ul> <li>Drive functions</li> </ul>   | No Safety Integrated Function 🔻                    |
| <ul> <li>Safety Integrated</li> </ul> |                                                    |
| Selecting safety functionality        |                                                    |
| Application fui                       |                                                    |
| Communicatic                          |                                                    |
| Interconnectio                        |                                                    |

2. Select "Basic Functions".



3. Select "Control type/safety functions".

| - Cofee later and                     |                                                |
|---------------------------------------|------------------------------------------------|
| <ul> <li>Safety Integrated</li> </ul> | Control tymos                                  |
| Selecting safety functionality        | Control type:                                  |
| ▼ Functions                           | via terminals                                  |
| Control type/safety functions         | 🔿 via PROFIsafe                                |
| STO                                   | via terminals (basic) and PROFIsafe (extended) |
| Test stop                             |                                                |
| F-DI / F-DO / PROFIsafe               | Safety Integrated Functions:                   |
| Acceptance test                       | STO                                            |
|                                       |                                                |

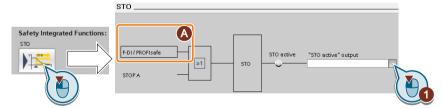
4. Select "Via terminals" as control type for the safety functions.

You have configured the safety functions.

Additional configurations of the safety functions are described in the "Safety Integrated" Function Manual.

Overview of the manuals (Page 592)

## 6.14.2.4 Interconnecting the "STO active" signal


## Overview

If you require the feedback signal "STO active" of the converter in your higher-level control system, then you must appropriately interconnect the signal.

#### **Function description**

### Procedure

1. Select the button for the feedback signal.



The screen form varies depending on the interface selected.

(A) Control type

2. Select the signal that matches your particular application.

You have interconnected the "STO active" checkback signal.

After STO has been selected, the converter signals "STO active" to the higher-level control.

# Parameters

| Parameter | Description                                       | Setting                                                                                                                      |
|-----------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| r9773.031 | CO/BO: SI status (processor 1 + pro-<br>cessor 2) | status on the drive (processor 1 + processor 2).<br>Bit 0: STO is selected in the drive<br>Bit 1: STO is active in the drive |
|           |                                                   | Bit 31: Test stop is required for STO                                                                                        |

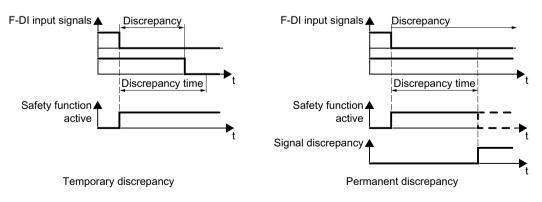
# 6.14.2.5 Setting the filter for fail-safe digital inputs

## Overview

The following filters are available for the fail-safe digital inputs:

- A filter for the simultaneity monitoring
- A filter for suppressing short signals, e.g. test pulses.

# **Function description**

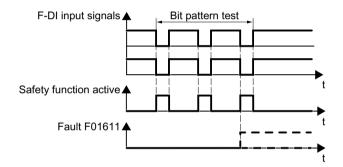

#### Discrepancy time for the simultaneity monitoring

The converter checks that the two input signals of the fail-safe digital input always have the same signal state (high or low).

With electromechanical sensors (e.g. emergency stop buttons or door switches), the two sensor contacts never switch at exactly the same time and are therefore temporarily inconsistent (discrepancy). A permanent discrepancy signifies a fault in the fail-safe digital input circuit, e.g. wire breakage.

When appropriately set, the converter tolerates brief discrepancies.

The discrepancy time does not extend the converter response time. The converter selects its safety function as soon as one of the two F-DI signals changes its state from high to low.




#### Filter for suppressing short signals

In the following cases, an immediate converter response to signal changes of the fail-safe digital inputs is not desirable:

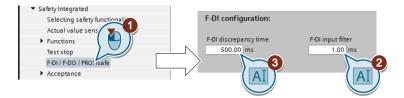
- If a fail-safe digital input of the converter is interconnected with an electromechanical sensor, signal changes can occur due to contact bounce.
- In order to identify faults due to short-circuit or cross faults, several control modules test their fail-safe digital outputs with "bit pattern tests" (bright/dark test). If a fail-safe digital input of the converter is interconnected with a fail-safe digital output of an open-loop control module, then the converter responds with a bit pattern test. The typical duration of the signal change within a bit pattern test:
  - On test: 1 ms
  - Off test: 4 ms

If the fail-safe digital input responds to many signal changes within a certain time, then the converter responds with a fault.



A filter in the converter suppresses brief signals as a result of the bit pattern test or contact bounce.




The filter extends the response time of the safety function by the debounce time.

## Setting the filter for fail-safe digital inputs

#### Precondition

You are online with Startdrive.

#### Procedure



- 1. Navigate to the filter settings.
- 2. Set the debounce time for the F-DI input filter.
- 3. Set the discrepancy time for the simultaneity monitoring.

You have set the input filter and the simultaneity monitoring of the fail-safe digital input.  $\hfill\square$ 

#### Parameters

| Parameter | Description                                            | Setting                                                                            |
|-----------|--------------------------------------------------------|------------------------------------------------------------------------------------|
| p9650     | SI F-DI changeover discrepancy time (processor 1) [ms] | Tolerance time to change over the fail-safe digital input for the basic functions. |
|           |                                                        | Factory setting: 500 ms                                                            |
| p9651     | SI STO debounce time (processor<br>1) [ms]             | Debounce time of the fail-safe digital input for the basic functions.              |
|           |                                                        | Factory setting: 1 ms                                                              |

#### **Further information**

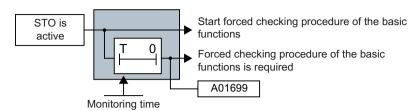
#### Debounce times for standard and safety functions

The debounce time p0724 for "standard" digital inputs has no influence on the fail-safe input signals. Conversely, the same applies: The F-DI debounce time does not affect the signals of the "standard" inputs.

If you use an input as a standard input, set the debounce time using parameter p0724.

If you use an input as a fail-safe input, set the debounce time as described above.

## 6.14.2.6 Setting the forced checking procedure (test stop)


#### Overview

The forced checking procedure (test stop) of the basic functions is a converter self test. The converter checks its circuits to switch off the torque.

## **Function description**

You start the forced checking procedure each time that the STO function is selected.

Using a timer block, the converter monitors as to whether the forced checking procedure is regularly performed.



#### Precondition

You are online with Startdrive.

#### Procedure

| <ul> <li>Safety Integrated</li> <li>Selecting safety functionality</li> <li>Functions</li> </ul> |                    | ſ                             | Forced checking procedure<br>of the shutdown paths | Test of the shutdown |
|--------------------------------------------------------------------------------------------------|--------------------|-------------------------------|----------------------------------------------------|----------------------|
| Control type/safety functions                                                                    | STO on processor 1 |                               | 1                                                  | paths required       |
| STO                                                                                              | selected           |                               |                                                    |                      |
| Test stop                                                                                        |                    |                               | 0 t                                                |                      |
| F-DI / F-D                                                                                       |                    |                               |                                                    |                      |
|                                                                                                  |                    | ne remaining until<br>st stop | Days Hours                                         |                      |

- 1. Select the screen form for setting the forced checking procedure.
- Set the monitoring time to a value to match your application.
   Requirement: Forced checking procedure (test stop) must be performed at least once a year.
- 3. Using this signal, the converter signals that a forced checking procedure (test stop) is required.

Interconnect this signal with a converter signal of your choice.

You have set the forced checking procedure (test stop) for the Basic Functions.  $\hfill\square$ 

## Parameters

| Parameter | Description                                       | Setting                                                                                                                       |
|-----------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| p9659     | SI forced checking procedure timer<br>[h]         | Monitoring time for the forced dormant error de-<br>tection.                                                                  |
|           |                                                   | Factory setting: 8 h                                                                                                          |
| r9660     | SI forced checking procedure re-<br>maining time  | Displays the remaining time until the forced dor-<br>mant error detection and testing the safety switch-<br>off signal paths. |
| r9773.031 | CO/BO: SI status (processor 1 + pro-<br>cessor 2) | Signals for the higher-level control system.<br>Bit 31: Test stop is required for STO                                         |

## 6.14.2.7 Finalizing online commissioning

#### Overview

After you finish the configuration of the safety function, proceed through the following operations to activate the settings.

#### Precondition

You are online with Startdrive.

#### **Function description**

#### Procedure



- 1. Press the  $\mathbf{X}$  button to end the safety commissioning.
- 2. Confirm the prompt for saving your settings (copy RAM to ROM).
- 3. Disconnect the online connection.
- 4. Select the 🚹 button to transfer settings from the converter to the PG/PC.
- 5. Save the project.
- 6. Switch off the converter power supply.
- 7. Wait until all LEDs on the converter go dark (no voltage condition).
- 8. Switch the converter power supply on again.

Your settings are now active.

## Parameters

| Parameter | Description                               | Setting                                                                                 |
|-----------|-------------------------------------------|-----------------------------------------------------------------------------------------|
| p0010     | Drive commissioning parameter fil-<br>ter | 0: Ready                                                                                |
| p0971     | Save parameters                           | 1: Save the drive object (copy from RAM to ROM)                                         |
|           |                                           | After the converter has saved the parameters in a non-volatile fashion, then p0971 = 0. |
| p9700     | SI Motion copy function                   | Start the SI parameter copy function.                                                   |
|           |                                           | Factory setting: 0                                                                      |
| p9701     | Acknowledge SI motion data                | Confirm SI Basic parameter change                                                       |
|           | change                                    | Factory setting: 0                                                                      |

# 6.14.2.8 Checking the interconnection of digital inputs

#### Overview

The simultaneous connection of digital inputs with a safety function and a "standard" function may lead to the drive behaving in unexpected ways.

If you control the safety functions in the converter via fail-safe digital inputs, then you must check as to whether the fail-safe digital inputs are in some instances interconnected with a "standard" function.

## **Function description**

#### Procedure

| Basic settings                 | Digital inputs           |                          |                                         |                        |   |                          |
|--------------------------------|--------------------------|--------------------------|-----------------------------------------|------------------------|---|--------------------------|
| Configuration summary          |                          |                          |                                         |                        |   |                          |
| Data sets                      |                          |                          |                                         |                        |   |                          |
| Units                          | Current I/O configuratio | on: [67] Distributed com | veyor technology with fieldbus (2) (33) |                        |   |                          |
| Reference variables            | DI                       | 0 Terminal evaluation    | -                                       | Digital input 0        |   | Digital input 0 inverted |
| I/O configuration              |                          | -0                       |                                         | p1055[1] BI: Jog bit 0 | ÷ | <u> </u>                 |
| Inputs/outputs                 | X07 000 X                |                          |                                         | Digital input 1        |   | Digital input 1 inverted |
| Digital inputs                 |                          | 1 Terminal evaluation    | *                                       | p1056[1] BI: Jog bit 1 |   |                          |
| Bidirectional digit            |                          | U U                      |                                         |                        |   |                          |
| Setpoint channel               | <b>C</b> DI:             | 2 Terminal evaluation    | -                                       | Digital input 2        |   | Digital input 2 inverted |
| Operating mode                 |                          | -0                       |                                         | ┯━ᅇ━∟───               |   |                          |
| Drive functions                | хов 000 Х                |                          | F-DI0                                   | Digital input 3        |   | Digital input 3 inverted |
| Safety Integrated              |                          | 3 Terminal evaluation    | M                                       |                        |   | -                        |
| Selecting safety functionality |                          |                          |                                         |                        |   |                          |
| Functions                      | Pin Fu                   | unction                  | 2 5                                     |                        |   |                          |
| Test stop                      |                          | 24V                      |                                         |                        |   |                          |
| F-DI / F-DO / PROFIsafe        |                          | 11 / DI3                 | 1 - 004                                 |                        |   |                          |
| Acceptance test                | 3 0                      |                          | 4 3                                     |                        |   |                          |
| Application functions          | 4 D                      | 10 / DI2                 |                                         |                        |   |                          |
| Communication                  | 5 PI                     | E                        |                                         |                        |   |                          |
| Interconnections               | Shield Pl                | -                        |                                         |                        |   |                          |

- 1. Select the screen for the digital inputs.
- 2. Remove all interconnections of the digital inputs that you use as fail-safe digital input F-DI:
- 3. You must delete the digital input connections for all CDS if you use the switchover of the command data sets (CDS).

You can find a description of the CDS switchover in the operating instructions.

You have ensured that the fail-safe digital inputs only control the safety functions in the converter.

## 6.14.2.9 Acceptance - completion of commissioning

#### Overview

The machine manufacturer is responsible in ensuring that his plant or machine functions perfectly. As a consequence, after commissioning, the machine manufacturer must check those functions or have them checked by specialist personnel, which represent an increased risk of injury or material damage. This acceptance or validation is, for example, also specified in the European machinery directive and essentially comprises two parts:

- Checking the safety-relevant functions and machine parts.
   → Acceptance test.
- Generate an "Acceptance report" that describes the test results.
   → Documentation.

Supply information for the validation, e.g. the harmonized European standards EN ISO 13849-1 and EN ISO 13849-2.

### **Function description**

#### Acceptance test of the machine or plant

The acceptance test checks whether the safety-relevant functions in the plant or machine function correctly. The documentation of the components used in the safety functions can also provide information about the necessary tests.

Testing the safety-related functions includes, e.g. the following:

- Are all safety equipment such as protective door monitoring devices, light barriers or emergency-off switches connected and ready for operation?
- Does the higher-level control respond as expected to the safety-relevant feedback signals of the converter?
- Do the converter settings match the configured safety-relevant function in the machine?

#### Acceptance test of the converter

The acceptance test of the converter is a part of the acceptance test of the entire machine or plant.

The acceptance test of the converter checks whether the integrated drive safety functions are set up correctly for the planned safety function of the machine.

Recommended acceptance test (Page 588)

#### Documentation of the converter

The following must be documented for the converter:

- The results of the acceptance test.
- The settings of the integrated drive safety functions.

The documentation must be signed.

#### Who may perform the acceptance test of the converter?

Personnel from the machine manufacturer, who, on account of their technical qualifications and knowledge of the safety functions, are in a position to perform the acceptance test in the correct manner are authorized to perform the acceptance testing of the converter.

#### Wizard for the acceptance test

The "Startdrive Advanced" commissioning tool (requires an appropriate license) includes a wizard for the acceptance test of the safety functions integrated in the drive.

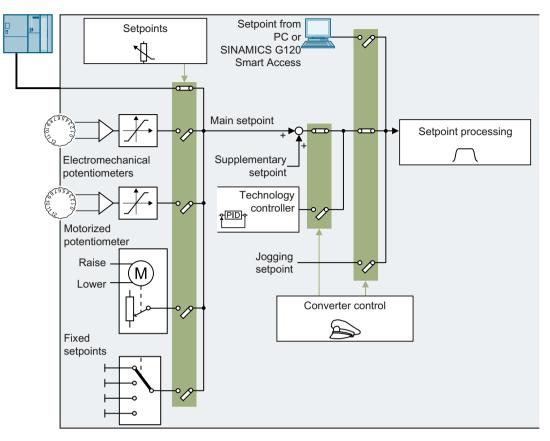
"Startdrive Advanced" guides you through the acceptance test, generates the appropriate traces to analyze the machine response – and generates an acceptance report as Excel file.

Further information is provided on the Internet:

Startdrive, system requirements and download (<u>https://</u><u>support.industry.siemens.com/cs/ww/en/view/109771710</u>) (Startdrive, system requirements and download)

#### Reduced acceptance test after function expansions

A full acceptance test is necessary only after first commissioning. A reduced acceptance test is sufficient when safety functions are expanded.


| Measure                                                                                            | Acceptance test                                                       |                                                                                                                                                                         |  |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                    | Acceptance test                                                       | Documentation                                                                                                                                                           |  |  |
| Functional expansion of the ma-<br>chine (additional drive).                                       | Yes.<br>Only check the safety<br>functions of the new<br>drive.       | <ul> <li>Supplement machine overview</li> <li>Supplement converter data</li> <li>Add function table</li> <li>Log the new checksums</li> <li>Countersignature</li> </ul> |  |  |
| Transfer of converter settings to<br>other identical machines by means<br>of series commissioning. | No.<br>Only check the control<br>of all of the safety func-<br>tions. | <ul><li>Add machine description</li><li>Check checksums</li><li>Check firmware versions</li></ul>                                                                       |  |  |

# 6.15 Setpoints

# 6.15.1 Overview

1

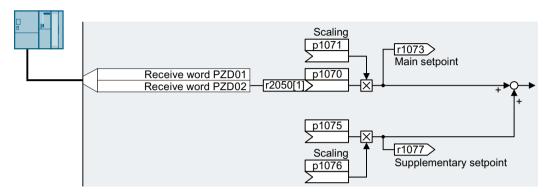
The converter receives its main setpoint from the setpoint source. The main setpoint generally specifies the motor speed.



You have the following options when selecting the source of the main setpoint:

- Converter fieldbus interface
- Electromechanical potentiometer
- · Motorized potentiometer simulated in the converter
- Fixed setpoints saved in the converter

You have the same selection options when selecting the source of the supplementary setpoint.


Under the following conditions, the converter switches from the main setpoint to other setpoints:

- When the technology controller is active and appropriately interconnected, its output specifies the motor speed.
- When jogging is active.
- When controlling from a Startdrive PC tool or the SINAMICS G120 Smart Access.

# 6.15.2 Specifying the setpoint via the fieldbus

## **Function description**

In the quick commissioning, you define the preassignment for the converter interfaces. Depending on what has been preassigned, after quick commissioning, the receive word PZD02 can be interconnected with the main setpoint.



## Example

Setting with receive word PZD02 as setpoint source:

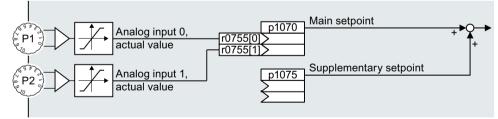
| Parameter       | Description                                                                              |
|-----------------|------------------------------------------------------------------------------------------|
| p1070 = 2050[1] | Interconnects the main setpoint with the receive word PZD02 from the fieldbus.           |
| p1075 = 2050[1] | Interconnects the supplementary setpoint with receive word PZD02 from the field-<br>bus. |

| Parameter | Description Setting                |                                                                                    |  |
|-----------|------------------------------------|------------------------------------------------------------------------------------|--|
| p1070[0n] | CI: Main setpoint                  | Signal source for the main setpoint. The factory setting depends on the converter. |  |
|           |                                    | Converter with PROFINET interface: [0] 2050[1]                                     |  |
|           |                                    | Converter without PROFINET interface: [0] 755[0]                                   |  |
| p1071[0n] | CI: Main setpoint scaling          | Signal source for scaling the main setpoint.                                       |  |
|           |                                    | Factory setting: 1                                                                 |  |
| r1073     | CO: Main setpoint active           | Displays the active main setpoint.                                                 |  |
| p1075[0n] | CI: Supplementary setpoint         | Signal source for the supplementary setpoint.                                      |  |
|           |                                    | Factory setting: 0                                                                 |  |
| p1076[0n] | CI: Supplementary setpoint scaling | Signal source for scaling the supplementary set-<br>point. Factory setting: 0      |  |

| Parameter  | Description                               | Setting                                                                                                                                                     |
|------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r1077      | CO: Supplementary setpoint effec-<br>tive | Displays the effective supplementary setpoint.                                                                                                              |
| r2050[011] | CO: PROFIdrive PZD receive word           | Connector output to interconnect the PZD received<br>from the fieldbus controller in the word format.<br>[1] Most standard telegrams receive the speed set- |
|            |                                           | point as receive word PZD02.                                                                                                                                |

## **Further information**

For further information refer to the function diagrams 2468, 9360 and 3030 of the List Manual.


# 6.15.3 Electromechanical potentiometer

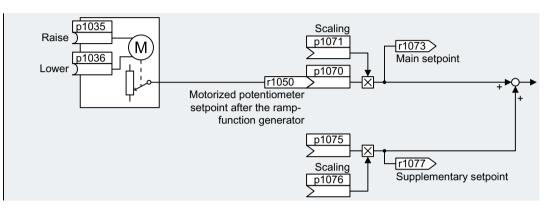
The converter has two electromechanical potentiometers.

The potentiometers are hardwired with the internal analog inputs 0 and 1.

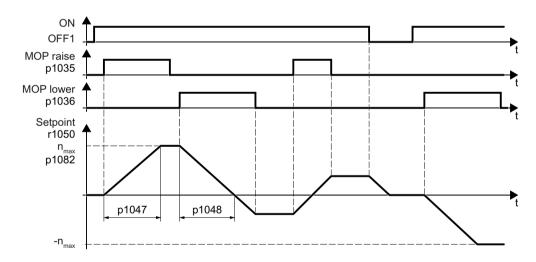
For more information on using a tool to adjust the two electromechanical potentiometers, refer to the replacing procedure in Section "Replacing the Electronic Module (Page 382)".






# Setting the potentiometer as setpoint source

| Parameter         | Description                                                                   |
|-------------------|-------------------------------------------------------------------------------|
| p1070[0] = 755[0] | Main setpoint                                                                 |
| p1070[1] = 755[1] | Interconnect the main setpoint with the internal analog inputs 0 and 1.       |
| p1075[0] = 755[0] | Additional setpoint                                                           |
| p1075[1] = 755[1] | Interconnect the additional setpoint with the internal analog inputs 0 and 1. |


# 6.15.4 Motorized potentiometer as setpoint source

## Overview

The "Motorized potentiometer" function emulates an electromechanical potentiometer. The output value of the motorized potentiometer can be set with the "higher" and "lower" control signals.



## **Function description**



#### Example

Setting with the motorized potentiometer as setpoint source:

| Parameter    | Description                                                              |
|--------------|--------------------------------------------------------------------------|
| p1070 = 1050 | Interconnects the main setpoint with the motorized potentiometer output. |

### Parameters

| Parameter | Description                                                         | Setting                                                                 |
|-----------|---------------------------------------------------------------------|-------------------------------------------------------------------------|
| p1035[0n] | BI: Motorized potentiometer set-                                    | Signal source to continuously increase the setpoint                     |
|           | point higher                                                        | The factory setting depends on the converter.                           |
|           |                                                                     | • With PROFINET interface: [0] 2090.13; [1] 0                           |
|           |                                                                     | • Without PROFINET interface: 0                                         |
| p1036[0n] | BI: Motorized potentiometer set-                                    | Signal source to continuously decrease the setpoint                     |
|           | point lower                                                         | The factory setting depends on the converter.                           |
|           |                                                                     | • With PROFINET interface: [0] 2090.14; [1] 0                           |
|           |                                                                     | • Without PROFINET interface: 0                                         |
| p1040[0n] | Motorized potentiometer start val-<br>ue [rpm]                      | Start value that is effective when the motor is switched on.            |
|           |                                                                     | Factory setting: 0 rpm                                                  |
| p1047     | Motorized potentiometer, ramp-up                                    | MOP ramp-up time                                                        |
|           | time [s]                                                            | Factory setting: 10 s                                                   |
| p1048     | Motorized potentiometer, ramp-                                      | MOP ramp-down time                                                      |
|           | down time [s]                                                       | Factory setting: 10 s                                                   |
| r1050     | Motorized potentiometer, setpoint after the ramp-function generator | Motorized potentiometer, setpoint after the ramp-<br>function generator |
| p1070[0n] | CI: Main setpoint                                                   | Signal source for the main setpoint                                     |
|           |                                                                     | The factory setting depends on the converter.                           |
|           |                                                                     | • With PROFINET interface: [0] 2050[1]                                  |
|           |                                                                     | • Without PROFINET interface: [0] 755[0]                                |
| p1071[0n] | CI: Main setpoint scaling                                           | Signal source for scaling the main setpoint                             |
|           |                                                                     | Factory setting: 1                                                      |
| r1073     | CO: Main setpoint active                                            | Displays the active main setpoint                                       |
| p1075[0n] | CI: Supplementary setpoint                                          | Signal source for the supplementary setpoint                            |
|           |                                                                     | Factory setting: 0                                                      |
| p1076[0n] | CI: Supplementary setpoint scaling                                  | Signal source for scaling the supplementary set-<br>point               |
|           |                                                                     | Factory setting: 0                                                      |
|           |                                                                     |                                                                         |

CO: Supplementary setpoint effec-

tive [rpm]

Table 6-1 Basic settings

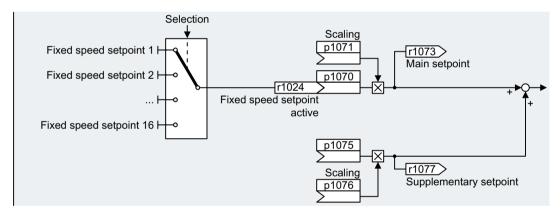
r1077

Displays the effective supplementary setpoint. The

value shown is the additional setpoint after scaling.

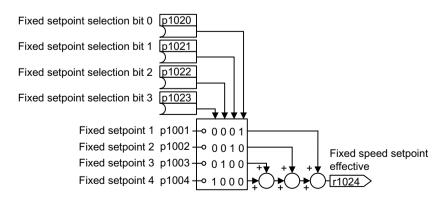
| Number    | Name                                              | Factory setting                                                                                                    |  |
|-----------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
| p1030[0n] | Motorized potentiometer configu-                  | Configuration for the motorized potentiometer                                                                      |  |
|           | ration                                            | Factory setting: 00110 bin                                                                                         |  |
|           |                                                   | .00                                                                                                                |  |
|           |                                                   | Storage active                                                                                                     |  |
|           |                                                   | = 0: After the motor has been switched on, the se point = p1040                                                    |  |
|           |                                                   | = 1: After the motor has switched off, the converte<br>saves the setpoint.                                         |  |
|           |                                                   | After the motor has switched on, the setpoint = th stored value.                                                   |  |
|           |                                                   | .01                                                                                                                |  |
|           |                                                   | Automatic mode, ramp-function generator active (1-signal via BI: p1041)                                            |  |
|           |                                                   | = 0: Ramp-up/ramp-down time = 0                                                                                    |  |
|           |                                                   | = 1: With ramp-function generator                                                                                  |  |
|           |                                                   | In manual mode (p1041 = 0), the ramp-function generator is always active.                                          |  |
|           |                                                   | .02                                                                                                                |  |
|           |                                                   | Initial rounding active                                                                                            |  |
|           |                                                   | 1: With initial rounding. Using the initial rounding function it is possible to enter very small setpoint changes. |  |
|           |                                                   | .03                                                                                                                |  |
|           |                                                   | Storage in NVRAM active                                                                                            |  |
|           |                                                   | 1: If bit 00 = 1, the setpoint is retained during a power failure.                                                 |  |
|           |                                                   | .04                                                                                                                |  |
|           |                                                   | Ramp-function generator always active                                                                              |  |
|           |                                                   | 1: The converter also calculates the ramp-functio generator when the motor is switched off.                        |  |
| p1037[0n] | Motorized potentiometer, maxi-<br>mum speed [rpm] | The converter limits the motorized potentiomete output to p1037.                                                   |  |
|           |                                                   | Factory setting: 0 rpm                                                                                             |  |
|           |                                                   | After quick commissioning, the converter sets the parameter to the appropriate value.                              |  |
| p1038[0n] | Motorized potentiometer, mini-<br>mum speed [rpm] | The converter limits the motorized potentiomete output to p1038.                                                   |  |
|           |                                                   | Factory setting: 0 rpm                                                                                             |  |
|           |                                                   | After quick commissioning, the converter sets the parameter to the appropriate value.                              |  |

| Table 6-2 Advanced settings |
|-----------------------------|
|-----------------------------|


| Number    | Name                                                   | Factory setting                                                                                                                                         |
|-----------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| p1043[0n] | Bl: Motorized potentiometer, ac-<br>cept setting value | Signal source for accepting the setting value. The motorized potentiometer accepts the setting value p1044 on signal change p1043 = $0 \rightarrow 1$ . |
|           |                                                        | Factory setting: 0                                                                                                                                      |
| p1044[0n] | CI: Motorized potentiometer, set-                      | Signal source for the setting value                                                                                                                     |
|           | ting value                                             | Factory setting: 0                                                                                                                                      |

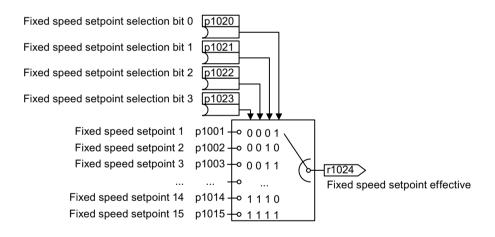
# **Further information**

For more information about the motorized potentiometer, refer to function diagram 3020 in the List Manual.


# 6.15.5 Fixed speed setpoint as setpoint source

# **Function description**




The converter makes a distinction between two methods when selecting the fixed speed setpoints:

#### Directly selecting a fixed speed setpoint



| p1020 | p1021 | p1022 | p1023 | Resulting setpoint            |
|-------|-------|-------|-------|-------------------------------|
| 0     | 0     | 0     | 0     | 0                             |
| 1     | 0     | 0     | 0     | p1001                         |
| 0     | 1     | 0     | 0     | p1002                         |
| 1     | 1     | 0     | 0     | p1001 + p1002                 |
| 0     | 0     | 1     | 0     | p1003                         |
| 1     | 0     | 1     | 0     | p1001 + p1003                 |
| 0     | 1     | 1     | 0     | p1002 + p1003                 |
| 1     | 1     | 1     | 0     | p1001 + p1002 + p1003         |
| 0     | 0     | 0     | 1     | p1004                         |
| 1     | 0     | 0     | 1     | p1001 + p1004                 |
| 0     | 1     | 0     | 1     | p1002 + p1004                 |
| 1     | 1     | 0     | 1     | p1001 + p1002 + p1004         |
| 0     | 0     | 1     | 1     | p1003 + p1004                 |
| 1     | 0     | 1     | 1     | p1001 + p1003 + p1004         |
| 0     | 1     | 1     | 1     | p1002 + p1003 + p1004         |
| 1     | 1     | 1     | 1     | p1001 + p1002 + p1003 + p1004 |

#### Selecting the fixed speed setpoint, binary



| p1020 | p1021 | p1022 | p1023 | Resulting setpoint |  |
|-------|-------|-------|-------|--------------------|--|
| 0     | 0     | 0     | 0     | 0                  |  |
| 1     | 0     | 0     | 0     | p1001              |  |
| 0     | 1     | 0     | 0     | p1002              |  |
| 1     | 1     | 0     | 0     | p1003              |  |
| 0     | 0     | 1     | 0     | p1004              |  |
| 1     | 0     | 1     | 0     | p1005              |  |
| 0     | 1     | 1     | 0     | p1006              |  |
| 1     | 1     | 1     | 0     | p1007              |  |
| 0     | 0     | 0     | 1     | p1008              |  |
| 1     | 0     | 0     | 1     | p1009              |  |

| p1020 | p1021 | p1022 | p1023 | Resulting setpoint |
|-------|-------|-------|-------|--------------------|
| 0     | 1     | 0     | 1     | p1010              |
| 1     | 1     | 0     | 1     | p1011              |
| 0     | 0     | 1     | 1     | p1012              |
| 1     | 0     | 1     | 1     | p1013              |
| 0     | 1     | 1     | 1     | p1014              |
| 1     | 1     | 1     | 1     | p1015              |

## Example

After it has been switched on, a conveyor belt only runs with two different velocities. The motor should now operate with the following corresponding speeds:

- The signal at digital input 0 switches the motor on and accelerates it up to 300 rpm.
- The signal at digital input 1 accelerates the motor up to 2000 rpm.
- With signals at both digital inputs, the motor accelerates up to 2300 rpm.

#### Settings for the application example

| Parameter              | Description                                                                                              |
|------------------------|----------------------------------------------------------------------------------------------------------|
| p1001[0] =<br>300.000  | Fixed speed setpoint 1                                                                                   |
| p1002[0] =<br>2000.000 | Fixed speed setpoint 2                                                                                   |
| p0840[0] = 722.0       | ON/OFF1: Switches on the motor with digital input 0                                                      |
| p1070[0] = 1024        | Main setpoint: Interconnects the main setpoint with a fixed speed setpoint.                              |
| p1020[0] = 722.0       | Fixed speed setpoint selection, bit 0: Interconnects fixed speed setpoint 1 with digital input 0 (DI 0). |
| p1021[0] = 722.1       | Fixed speed setpoint selection, bit 1: Interconnects fixed speed setpoint 2 with digital input 1 (DI 1). |
| p1016 = 1              | Fixed speed setpoint mode: Directly selects fixed speed setpoints.                                       |

#### Resulting fixed speed setpoints for the application example

| Fixed speed setpoint selected via | Resulting setpoint |
|-----------------------------------|--------------------|
| DI 0 = 0                          | Motor stops        |
| DI 0 = 1 and DI 1 = 0             | 300 rpm            |
| DI 0 = 1 and DI 1 = 1             | 2300 rpm           |

| Parameter | Description                      | Setting                |
|-----------|----------------------------------|------------------------|
| p1001[0n] | CO: Fixed speed setpoint 1 [rpm] | Fixed speed setpoint 1 |
|           |                                  | Factory setting: 0 rpm |
| p1002[0n] | CO: Fixed speed setpoint 2 [rpm] | Fixed speed setpoint 2 |
|           |                                  | Factory setting: 0 rpm |

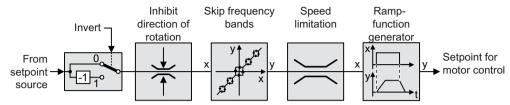
| Parameter | Description                           | Setting                                     |
|-----------|---------------------------------------|---------------------------------------------|
|           |                                       |                                             |
| p1015[0n] | CO: Fixed speed setpoint 15 [rpm]     | Fixed speed setpoint 15                     |
|           |                                       | Factory setting: 0 rpm                      |
| p1016     | Fixed speed setpoint selection        | Fixed speed setpoint mode                   |
|           | mode                                  | Factory setting: 1                          |
|           |                                       | 1: Direct                                   |
|           |                                       | 2: Binary                                   |
| p1020[0n] | Fixed speed setpoint selection, bit 0 | Fixed speed setpoint selection, bit 0       |
|           |                                       | Factory setting: 0                          |
| p1021[0n] | Fixed speed setpoint selection, bit 1 | Fixed speed setpoint selection, bit 1       |
|           |                                       | Factory setting: 0                          |
| p1022[0n] | Fixed speed setpoint selection, bit 2 | Fixed speed setpoint selection, bit 2       |
|           |                                       | Factory setting: 0                          |
| p1023[0n] | Fixed speed setpoint selection, bit 3 | Fixed speed setpoint selection, bit 3       |
|           |                                       | Factory setting: 0                          |
| r1024     | Fixed speed setpoint active           | Fixed speed setpoint is active.             |
| r1025.0   | Fixed speed setpoint status           | Fixed speed setpoint status                 |
|           |                                       | 1 signal: Fixed speed setpoint is selected. |

## **Further information**

Additional information about binary and direct selection can be found in function diagrams 3010 and 3011 in the List Manual.

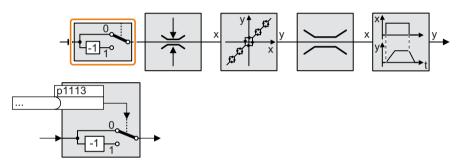
# 6.16 Setpoint processing

# 6.16.1 Overview


#### Overview



Setpoint processing influences the setpoint using the following functions:


- "Invert" inverts the motor direction of rotation.
- The "Inhibit direction of rotation" function prevents the motor from rotating in the incorrect direction; this function can make sense for conveyor belts, extruders, pumps and fans, for example.
- The "Skip frequency bands" prevent the motor from being continuously operated within these skip bands. This function avoids mechanical resonance effects by only permitting the motor to operate briefly at specific speeds.

- The "Speed limitation" function protects the motor and the driven load against excessively high speeds.
- The "Ramp-function generator" function prevents the setpoint from suddenly changing. As a consequence, the motor accelerates and brakes with a reduced torque.



# 6.16.2 Invert setpoint

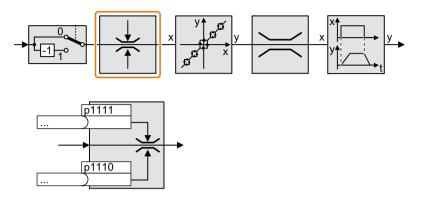
## **Function description**



The function inverts the sign of the setpoint using a binary signal.

# Example

To invert the setpoint via an external signal, interconnect parameter p1113 with a binary signal of your choice.


Table 6-3Application examples showing how a setpoint is inverted

| Parameter       | Description                                                                                              |
|-----------------|----------------------------------------------------------------------------------------------------------|
| p1113 = 722.1   | Digital input 1 = 0: Setpoint remains unchanged.<br>Digital input 1 = 1: Converter inverts the setpoint. |
| p1113 = 2090.11 | Inverts the setpoint via the fieldbus (control word 1, bit 11).                                          |

| Parameter | Description            | Setting                                        |
|-----------|------------------------|------------------------------------------------|
| p1113[0n] | BI: Setpoint inversion | Sets the signal source to invert the setpoint. |
|           |                        | Factory setting: dependent upon the converter  |

# 6.16.3 Inhibit direction of rotation

# **Function description**



In the factory setting of the converter, both motor directions of rotation are enabled. Set the corresponding parameter to a value = 1 to permanently block directions of rotation.

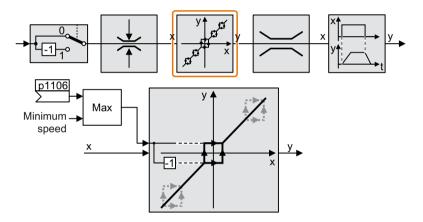
# Example

 Table 6-4
 Application examples showing how a setpoint is inverted

| Parameter        | Description                                                       |  |
|------------------|-------------------------------------------------------------------|--|
| p1110[0] = 1     | Negative direction of rotation is permanently inhibited.          |  |
| p1110[0] = 722.3 | Digital input 3 = 0: Negative direction of rotation is enabled.   |  |
|                  | Digital input 3 = 1: Negative direction of rotation is inhibited. |  |

| Parameter | Description                    | Setting                                                        |
|-----------|--------------------------------|----------------------------------------------------------------|
| p1110[0n] | BI: Inhibit negative direction | Sets the signal source to disable the negative direc-<br>tion. |
|           |                                | Factory setting: 0                                             |
| p1111[0n] | BI: Inhibit positive direction | Sets the signal source to disable the positive direc-<br>tion. |
|           |                                | Factory setting: 0                                             |

# 6.16.4 Skip frequency bands and minimum speed


## Overview

The converter has a minimum speed and four skip frequency bands:

- The minimum speed prevents continuous motor operation at speeds less than the minimum speed.
- Each skip frequency band prevents continuous motor operation within a specific speed range.

## **Function description**

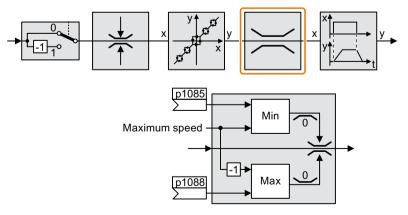
#### Minimum speed



Speeds where the absolute value is less than the minimum speed are only possible when the motor is accelerating or braking.

#### Skip frequency bands

Further information on the skip frequency bands is provided in function diagram 3050 of the List Manual.


| Parameter | Description                                                                        | Setting                                                                                                    |
|-----------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| p1051[0n] | CI: Speed limit of ramp-function<br>generator, positive direction of ro-<br>tation | Sets the signal source for the speed limit of the positive direction on the ramp-function generator input. |
|           |                                                                                    | Factory setting: 1083                                                                                      |
| p1052[0n] | CI: Speed limit of ramp-function generator, negative direction of ro-<br>tation    | Sets the signal source for the speed limit of the negative direction on the ramp-function generator input. |
|           |                                                                                    | Factory setting: 1086                                                                                      |
| p1080[0n] | Minimum speed [rpm]                                                                | Sets the lowest possible motor speed.                                                                      |
|           |                                                                                    | Factory setting: 0                                                                                         |

| Parameter | Description                                                  | Setting                                                                                               |
|-----------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| p1083[0n] | CO: Speed limit in positive direc-                           | Sets the maximum speed for the positive direction.                                                    |
|           | tion of rotation [rpm]                                       | Factory setting: 210000                                                                               |
| r1084     | CO: Speed limit positive active<br>[rpm]                     | Display and connector output for the active positive speed limit.                                     |
| p1085[0n] | CI: Speed limit in positive direction of rotation            | Sets the signal source for the speed limit of the positive direction.                                 |
|           |                                                              | Factory setting: 1083                                                                                 |
| p1091[0n] | Skip speed 1 4 [rpm]                                         | Sets skip speed 1 4.                                                                                  |
|           |                                                              | Factory setting: 0                                                                                    |
| p1094[0n] |                                                              |                                                                                                       |
| p1098[0n] | CI: Skip speed scaling                                       | Sets the signal source for scaling the skip speeds.                                                   |
|           |                                                              | Factory setting: 1                                                                                    |
| r1099.0   | CO/BO: Skip frequency band of sta-                           | Display and BICO output for the skip bands.                                                           |
|           | tus word                                                     | .00 1 signal: r1170 within the skip band                                                              |
| p1106[0n] | CI: Minimum speed signal source                              | Sets the signal source for lowest possible motor speed.                                               |
|           |                                                              | Factory setting: 0                                                                                    |
| r1112     | CO: Speed setpoint according to minimum limit [rpm]          | Displays the speed setpoint after the minimum lim-<br>iting.                                          |
| r1114     | CO: Setpoint after direction limit-<br>ing [rpm]             | Displays the speed/velocity setpoint after the changeover and limiting the direction.                 |
| r1119     | CO: Ramp-function generator set-<br>point at the input [rpm] | Displays the setpoint at the input of the ramp-func-<br>tion generator.                               |
| r1170     | CO: Speed controller setpoint sum<br>[rpm]                   | Display and connector output for the speed set-<br>point after selecting the ramp-function generator. |

Further information is provided in the parameter list of the List Manual.

# 6.16.5 Speed limitation

The maximum speed limits the speed setpoint range for both directions of rotation.



The converter generates a message (fault or alarm) when the maximum speed is exceeded.

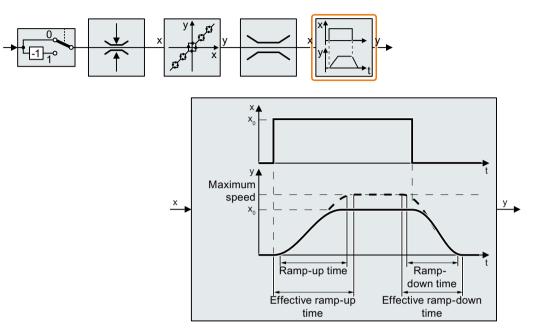
If you must limit the speed depending on the direction of rotation, then you can define speed limits for each direction.

#### Parameters

| Parameter | Description                                       | Setting                                                                        |
|-----------|---------------------------------------------------|--------------------------------------------------------------------------------|
| p1082[0n] | Maximum speed [rpm]                               | Sets the highest possible speed.                                               |
|           |                                                   | Factory setting: 1500                                                          |
| p1083[0n] | CO: Speed limit in positive direc-                | Sets the maximum speed for the positive direction.                             |
|           | tion of rotation [rpm]                            | Factory setting: 210000                                                        |
| p1085[0n] | CI: Speed limit in positive direction of rotation | Sets the signal source for the speed limit of the positive direction.          |
|           |                                                   | Factory setting: 1083                                                          |
| p1086[0n] | CO: Speed limit in negative direc-                | Sets the speed limit for the negative direction.                               |
|           | tion of rotation [rpm]                            | Factory setting: -210000                                                       |
| p1088[0n] | CI: Speed limit in negative direction of rotation | Sets the signal source for the speed/velocity limit of the negative direction. |
|           |                                                   | Factory setting: 1086                                                          |

# 6.16.6 Ramp-function generator

#### Overview


The ramp-function generator in the setpoint channel limits the rate change of the speed setpoint (acceleration). A reduced acceleration reduces the accelerating torque of the motor. In this case, the motor reduces the load on the mechanical system of the driven machine.

You can select between two different ramp-function generator types:

- Extended ramp-function generator The expanded ramp-function generator limits not only the acceleration but also the change in acceleration (jerk) by rounding the setpoint. In this case, the torque does not rise suddenly in the motor.
- Basic ramp-function generator The basic ramp-function generator limits the acceleration, however not the rate the acceleration changes (jerk).

## Extended ramp-function generator

The ramp-up and ramp-down times of the extended ramp-function generator can be set independently of each other. The optimal times depend on the application and can lie in the range from a few 100 ms to several minutes.



Initial and final rounding permit smooth, jerk-free acceleration and braking.

The ramp-up and ramp-down times of the motor are increased by the rounding times:

- Effective ramp-up time =  $p1120 + 0.5 \times (p1130 + p1131)$ .
- Effective ramp-down time =  $p1121 + 0.5 \times (p1130 + p1131)$ .

| Parameter | Description                                            | Setting                                                                                                                              |
|-----------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| p1115     | Ramp-function generator selection                      | Sets the ramp-function generator type.                                                                                               |
|           |                                                        | 0: Basic ramp-function generator                                                                                                     |
|           |                                                        | 1: Extended ramp-function generator (factory set-<br>ting)                                                                           |
| p1120[0n] | Ramp-function generator, ramp-<br>up time [s]          | The ramp-function generator ramps-up the speed setpoint from standstill (setpoint = 0) up to the maximum speed (p1082) in this time. |
|           |                                                        | Factory setting: 1                                                                                                                   |
| p1121[0n] | Ramp-function generator, ramp-<br>down time [s]        | Sets the ramp-down time for the ramp-function generator.                                                                             |
|           |                                                        | Factory setting: 1                                                                                                                   |
| p1130[0n] | Ramp-function generator, initial rounding-off time [s] | Sets the initial rounding-off time for the extended<br>ramp generator. The value applies to ramp-up and<br>ramp-down.                |
|           |                                                        | Factory setting: 0                                                                                                                   |

| Parameter | Description                                             | Setting                                                                                                                 |
|-----------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| p1131[0n] | Ramp-function generator, final<br>rounding-off time [s] | Sets the final rounding-off time for the extended ramp generator.                                                       |
|           |                                                         | Factory setting: 0                                                                                                      |
| p1134[0n] | Ramp-function generator, round-<br>ing-off type         | Sets the smoothed response to the OFF1 command<br>or the reduced setpoint for the extended ramp-<br>function generator. |
|           |                                                         | 0: Continuous smoothing (factory setting)                                                                               |
|           |                                                         | 1: Discontinuous smoothing                                                                                              |
|           |                                                         | x<br>y<br>y<br>p1134 = 0<br>y<br>p1134 = 1<br>t                                                                         |
| p1135[0n] | OFF3 ramp-down time [s]                                 | Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.                                 |
|           |                                                         | Factory setting: 0                                                                                                      |
| p1136[0n] | OFF3 initial rounding-off time [s]                      | Sets the initial rounding-off time for OFF3 for the extended ramp generator.                                            |
|           |                                                         | Factory setting: 0                                                                                                      |
| p1137[0n] | OFF3 final rounding-off time [s]                        | Sets the final rounding-off time for OFF3 for the extended ramp generator.                                              |
|           |                                                         | Factory setting: 0                                                                                                      |

You can find more information in function diagram 3070 and in the parameter list of the List Manual.

### Setting the extended ramp-function generator

#### Procedure

- 1. Enter the highest possible speed setpoint.
- 2. Switch on the motor.
- 3. Evaluate your drive response.
  - If the motor accelerates too slowly, then reduce the ramp-up time.
     An excessively short ramp-up time means that the motor will reach its current limiting when accelerating, and will temporarily not be able to follow the speed setpoint. In this case, the drive exceeds the set time.
  - If the motor accelerates too fast, then extend the ramp-up time.
  - Increase the initial rounding if the acceleration is jerky.
     In the case of a permanent magnet synchronous motor, initial rounding can prevent the motor from tilting during startup.
  - In most applications, it is sufficient when the final rounding is set to the same value as the initial rounding.

- 4. Switch off the motor.
- 5. Evaluate your drive response.
  - If the motor decelerates too slowly, then reduce the ramp-down time.
     The minimum ramp-down time that makes sense depends on your particular application.
     For an excessively short ramp-down time, the converter either reaches the motor current, or the DC link voltage in the converter becomes too high.
  - Extend the ramp-down time if the motor is braked too quickly or the converter goes into a fault condition when braking.

6. Repeat steps 1 ... 5 until the drive behavior meets the requirements of the machine or plant.

You have set the extended ramp-function generator.  $\hfill\square$ 

#### **Basic ramp-function generator**



When compared to the extended ramp-function generator, the basic ramp-function generator has no rounding times.

#### Parameters for setting the basic ramp-function generator

| Parameter | Description                       | Setting                                                    |
|-----------|-----------------------------------|------------------------------------------------------------|
| p1082[0n] | Maximum speed [rpm]               | Sets the highest possible speed.                           |
|           |                                   | Factory setting: 1500                                      |
| p1115     | Ramp-function generator selection | Sets the ramp-function generator type.                     |
|           |                                   | 0: Basic ramp-function generator                           |
|           |                                   | 1: Extended ramp-function generator (factory set-<br>ting) |

| Parameter | Description                                     | Setting                                                                                                                              |
|-----------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| p1120[0n] | Ramp-function generator, ramp-<br>up time [s]   | The ramp-function generator ramps-up the speed setpoint from standstill (setpoint = 0) up to the maximum speed (p1082) in this time. |
|           |                                                 | Factory setting: 1                                                                                                                   |
| p1121[0n] | Ramp-function generator, ramp-<br>down time [s] | Sets the ramp-down time for the ramp-function generator.                                                                             |
|           |                                                 | Factory setting: 1                                                                                                                   |
| p1135     | OFF3 ramp-down time [s]                         | Sets the ramp-down time from the maximum speed down to zero speed for the OFF3 command.                                              |
|           |                                                 | Factory setting: 0                                                                                                                   |

## Changing the ramp-up and ramp-down times in operation

The ramping up and down time of the ramp-function generator can be changed during operation. The scaling value can come, e.g. from the fieldbus.

#### Preconditions

- You have commissioned the communication between the converter and the control system.
- Free telegram 999 has been set in the converter and in your higher-level control system.
   Expanding or freely interconnecting telegrams (Page 160)
- The control sends the scaling value to the converter in PZD 3.

#### Procedure

- Set p1138 = 2050[2]. This means that you have interconnected the scaling factor for the ramp-up time with PZD receive word 3.
- Set p1139 = 2050[2]. This means that you have interconnected the scaling factor for the ramp-down time with PZD receive word 3.

The converter receives the value for scaling the ramp-up and ramp-down times via PZD receive word 3.

#### Parameters for setting the scaling

| Parameter  | Description                                            | Setting                                                                                                       |
|------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| p1138[0n]  | CI: Ramp-function generator ramp-<br>up time scaling   | Sets the signal source for scaling the ramp-up time of the ramp-function generator.                           |
|            |                                                        | Factory setting: 1                                                                                            |
| p1139[0n]  | CI: Ramp-function generator ramp-<br>down time scaling | Sets the signal source for scaling the ramp-down time of the ramp-function generator.                         |
|            |                                                        | Factory setting: 1                                                                                            |
| r2050[011] | CO: PROFIdrive PZD receive word                        | Connector output to interconnect PZD (setpoints) with word format received from the fieldbus con-<br>troller. |

# 6.17 PID technology controller

#### Overview



The technology controller controls process variables, e.g. pressure, temperature, level or flow.

## Precondition

#### **Additional functions**

The U/f control or the vector control has been set.

#### Tools

To change the function settings, you can use a PC tool, for example.

## **Function description**

#### **Function diagram**

The technology controller is implemented as a PID controller (controller with proportional, integral, and differential action).

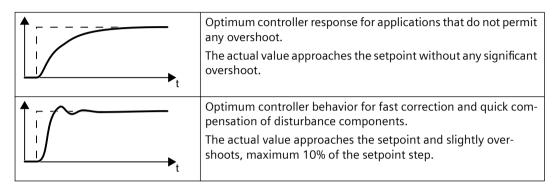


① The converter uses the start value when all the following conditions are simultaneously satisfied:

- The technology controller supplies the main setpoint (p2251 = 0).
- The ramp-function generator output of the technology controller has not yet reached the start value.

#### **Basic settings**

The settings required as a minimum are marked in gray in the function diagram:


- Interconnect setpoint and actual values with signals of your choice
- Set ramp-function generator and controller parameters  $K_P$ ,  $T_I$  and  $T_d$ .

## Set controller parameters $K_P$ , $T_I$ and $T_d$ .

#### Procedure

- 1. Temporarily set the ramp-up and ramp-down times of the ramp-function generator (p2257 and p2258) to zero.
- 2. Enter a setpoint step and monitor the associated actual value.

The slower the response of the process to be controlled, the longer you must monitor the controller response. Under certain circumstances (e.g. for a temperature control), you need to wait several minutes until you can evaluate the controller response.



| <ul> <li>The actual value only slowly approaches the setpoint.</li> <li>Increase the proportional component K<sub>P</sub> (p2280) and reduce the integration time T<sub>1</sub> (p2285).</li> </ul>                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The actual value only slowly approaches the setpoint with slight oscillation.</li> <li>Increase the proportional component K<sub>P</sub> (p2280) and reduce the rate time T<sub>d</sub> (p2274)</li> </ul>        |
| <ul> <li>The actual value quickly approaches the setpoint, but overshoots too much.</li> <li>Decrease the proportional component K<sub>P</sub> (p2280) and increase the integration time T<sub>I</sub> (p2285).</li> </ul> |

3. Set the ramp-up and ramp-down times of the ramp-function generator back to their original value.

You have manually set the technology controller.

#### Limiting the output of the technology controller

In the factory setting, the output of the technology controller is limited to  $\pm$  maximum speed. You must change this limit, depending on your particular application. Example: The output of the technology controller supplies the speed setpoint for a pump. The pump should only run in the positive direction.

# Parameters

# **Basic settings**

| Parameter | Description                                                          | Setting                                                                                                                             |
|-----------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| r0046.031 | CO/BO: Missing enable signals                                        | Display and BICO output for missing enable signals<br>that are preventing the closed-loop drive control<br>from being commissioned. |
| r0052.015 | CO/BO: Status word 1                                                 | Display and connector output for status word 1.                                                                                     |
| r0056.015 | CO/BO: Status word, closed-loop control                              | Display and BICO output for the status word of the closed-loop control.                                                             |
| r1084     | CO: Speed limit positive active<br>[rpm]                             | Display and connector output for the active positive and negative speed limit.                                                      |
| r1087     | CO: Speed limit negative active<br>[rpm]                             |                                                                                                                                     |
| p2200[0n] | BI: Technology controller enable                                     | Sets the signal source to switch in/switch out the technology controller.                                                           |
|           |                                                                      | 1 signal: Technology controller is enabled.<br>Factory setting: 0                                                                   |
| p2252     | Technology controller configura-                                     | Sets the configuration of the technology controller.                                                                                |
|           | tion                                                                 | Factory setting: 0000 0000 bin                                                                                                      |
| p2253[0n] | CI: Technology controller setpoint 1                                 | Sets the signal source for the setpoint 1 and set-                                                                                  |
| p2254[0n] | CI: Technology controller setpoint 2                                 | point 2 of the technology controller.<br>Factory setting: 0                                                                         |
| p2255     | Technology controller setpoint 1                                     | Sets the scaling for the setpoint 1 and setpoint 2 of                                                                               |
| P==00     | scaling [%]                                                          | the technology controller.                                                                                                          |
| p2256     | Technology controller setpoint 2<br>scaling [%]                      | Factory setting: 100                                                                                                                |
| p2257     | Technology controller ramp-up time [s]                               | Sets the ramp-up and ramp-down time of the tech-<br>nology controller.                                                              |
| p2258     | Technology controller ramp-down time [s]                             | Factory setting: 1                                                                                                                  |
| r2260     | CO: Technology controller setpoint after ramp-function generator [%] | Displays the setpoint after the ramp-function gen-<br>erator of the technology controller.                                          |
| p2261     | Technology controller setpoint fil-<br>ter time constant [s]         | Sets the time constant for the setpoint filter (PT1) of the technology controller.                                                  |
|           |                                                                      | Factory setting: 0                                                                                                                  |
| r2262     | CO: Technology controller setpoint<br>after filter [%]               | Display and connector output for the smoothed setpoint after the setpoint filter (PT1) of the technology controller.                |
| p2263     | Technology controller type                                           | Sets the type of technology controller.                                                                                             |
|           |                                                                      | 0: D component in the actual value signal (factory setting)                                                                         |
|           |                                                                      | 1: D component in system deviation                                                                                                  |
| r2273     | CO: Technology controller system deviation [%]                       | Displays the system deviation between the setpoint and actual value of the technology controller.                                   |

| Parameter | Description                                                                         | Setting                                                                                                                                                                                                                                 |
|-----------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p2274     | Technology controller differentia-<br>tion time constant [s]                        | Sets the time constant for the differentiation (D component) of the technology controller.                                                                                                                                              |
|           |                                                                                     | Factory setting: 0                                                                                                                                                                                                                      |
| p2280     | Technology controller proportional gain                                             | Sets the proportional gain (P component) of the technology controller.                                                                                                                                                                  |
|           |                                                                                     | Factory setting: 1                                                                                                                                                                                                                      |
| p2285     | Technology controller integral time [s]                                             | Sets the integral time (I component, integrating time constant) of the technology controller.                                                                                                                                           |
|           |                                                                                     | Factory setting: 30                                                                                                                                                                                                                     |
| p2286[0n] | BI: Hold technology controller inte-<br>grator                                      | Sets the signal source to hold the integrator for the technology controller.                                                                                                                                                            |
|           |                                                                                     | Factory setting: 56.13                                                                                                                                                                                                                  |
| p2289[0n] | CI: Technology controller precon-<br>trol signal                                    | Sets the signal source for the precontrol signal of the technology controller.                                                                                                                                                          |
|           |                                                                                     | Factory setting: 0                                                                                                                                                                                                                      |
| p2306     | Technology controller system devi-<br>ation inversion                               | Setting to invert the system deviation of the tech-<br>nology controller.                                                                                                                                                               |
|           |                                                                                     | 0: No inversion (factory setting)                                                                                                                                                                                                       |
|           |                                                                                     | 1: Inversion                                                                                                                                                                                                                            |
| p2339     | Technology controller threshold<br>value for I proportion stop at skip<br>speed [%] | Sets the threshold value for the system deviation of<br>the technology controller, which controls holding<br>the controller integral component in the range of<br>the skip speeds of the ramp-function generator.<br>Factory setting: 2 |
| r2344     | CO: Technology controller last speed setpoint (smoothed) [%]                        | Displays the smoothed speed setpoint of the tech-<br>nology controller prior to switching to operation<br>with fault response (see p2345).                                                                                              |
| p2345     | Technology controller fault re-<br>sponse                                           | Sets the response of the technology controller to the occurrence of fault F07426 (technology controller actual value limited).                                                                                                          |
|           |                                                                                     | 0: Function inhibited (factory setting)                                                                                                                                                                                                 |
|           |                                                                                     | 1: On fault: Changeover to r2344 (or p2302)                                                                                                                                                                                             |
|           |                                                                                     | 2: On fault: Changeover to p2215                                                                                                                                                                                                        |
| r2349.013 | CO/BO: Technology controller sta-<br>tus word                                       | Display and BICO output for the status word of the technology controller.                                                                                                                                                               |

# Limiting the output of the technology controller

| Number    | Name                                                | Factory setting                                                    |
|-----------|-----------------------------------------------------|--------------------------------------------------------------------|
| p2290[0n] | BI: Technology controller limitation enable         | Sets the signal source to enable the technology controller output. |
|           |                                                     | The technology controller output is enabled with a 1 signal.       |
|           |                                                     | Factory setting: 1                                                 |
| p2291     | CO: Technology controller maxi-<br>mum limiting [%] | Sets the maximum limit of the technology control-<br>ler.          |
|           |                                                     | Factory setting: 100                                               |

| Number    | Name                                                          | Factory setting                                                                            |
|-----------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| p2292     | CO: Technology controller mini-<br>mum limiting [%]           | Sets the minimum limit of the technology control-<br>ler.                                  |
|           |                                                               | Factory setting: 0                                                                         |
| p2293     | Technology controller ramp-up/<br>ramp-down time [s]          | Sets the ramping time for the output signal of the technology controller.                  |
|           |                                                               | Factory setting: 1                                                                         |
| r2294     | CO: Technology controller output signal [%]                   | Display and connector output for the output signal of the technology controller.           |
| p2295     | CO: Technology controller output scaling [%]                  | Sets the scaling for the output signal of the tech-<br>nology controller.                  |
|           |                                                               | Factory setting: 100                                                                       |
| p2296[0n] | CI: Technology controller output scaling                      | Sets the signal source for the scaling value of the technology controller.                 |
|           |                                                               | Factory setting: 2295                                                                      |
| p2297[0n] | CI: Technology controller maxi-<br>mum limiting signal source | Sets the signal source for the maximum limiting of the technology controller.              |
|           |                                                               | Factory setting: 1084                                                                      |
| p2298[0n] | CI: Technology controller mini-<br>mum limiting signal source | Sets the signal source for the minimum limiting of the technology controller.              |
|           |                                                               | Factory setting: 1087                                                                      |
| p2299[0n] | CI: Technology controller limita-<br>tion offset              | Sets the signal source for the offset of the output limiting of the technology controller. |
|           |                                                               | Factory setting: 0                                                                         |
| p2302     | Technology controller output sig-<br>nal start value [%]      | Sets the start value for the output of the technology controller.                          |
|           |                                                               | Factory setting: 0                                                                         |

| Parameter | Description                                                 | Setting                                                                                                                 |
|-----------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| p2264[0n] | CI: Technology controller actual value                      | Sets the signal source for the actual value of the technology controller.                                               |
|           |                                                             | Factory setting: 0                                                                                                      |
| p2265     | Technology controller actual value filter time constant [s] | Sets the time constant for the actual value filter (PT1) of the technology controller.                                  |
|           |                                                             | Factory setting: 0                                                                                                      |
| p2266     | CO: Technology controller actual value after filter [%]     | Display and connector output for the smoothed ac-<br>tual value after the filter (PT1) of the technology<br>controller. |
| p2267     | Technology controller upper limit actual value [%]          | Sets the upper limit for the actual value signal of the technology controller.                                          |
|           |                                                             | Factory setting: 100                                                                                                    |
| p2268     | Technology controller lower limit actual value [%]          | Sets the lower limit for the actual value signal of the technology controller.                                          |
|           |                                                             | Factory setting: -100                                                                                                   |
| p2269     | Technology controller gain actual value [%]                 | Sets the scaling factor for the actual value of the technology controller.                                              |
|           |                                                             | Factory setting: 100                                                                                                    |

| Parameter | Description                                       | Setting                                                                                         |
|-----------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
| p2270     | Technology controller actual value function       | Setting to use an arithmetic function for the actual value signal of the technology controller. |
|           |                                                   | 0: Output (y) = input (x) (factory setting)                                                     |
|           |                                                   | 1: Root function (root from x)                                                                  |
|           |                                                   | 2: Square function (x * x)                                                                      |
|           |                                                   | 3: Cube function (x * x * x)                                                                    |
| p2271     | Technology controller actual value inversion      | Setting to invert the actual value signal of the tech-<br>nology controller.                    |
|           |                                                   | 0: No inversion (Factory setting)                                                               |
|           |                                                   | 1: Inversion actual value signal                                                                |
| r2272     | CO: Technology controller actual value scaled [%] | Display and connector output for the scaled actual value signal of the technology controller.   |

# PID technology controller, fixed values (binary selection)

| Parameter     | Description                                                        | Setting                                                                                                |
|---------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| p2201[0n]<br> | CO: Technology controller fixed value 1 15 [%]                     | Sets the value for fixed value 1 15 of the tech-<br>nology controller.                                 |
| p2215[0n]     |                                                                    | Factory setting: 10, 20, 30 150                                                                        |
| p2216[0n]     | Technology controller fixed value selection method                 | Sets the method to select the fixed setpoints:<br>1: Direct selection (factory setting)                |
|               |                                                                    | 2: Binary selection                                                                                    |
| r2224         | CO: Technology controller fixed val-<br>ue active [%]              | Display and connector output for the selected and active fixed value of the technology controller.     |
| r2225.0       | CO/BO: Technology controller fixed value selection status word [%] | Display and BICO output for the status word of the fixed value selection of the technology controller. |
| r2229         | Technology controller number ac-<br>tual                           | Displays the number of the selected fixed setpoint of the technology controller.                       |

# PID technology controller, fixed values (direct selection)

| Parameter | Description                                                        | Setting                                                                                                |  |
|-----------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| p2216[0n] | Technology controller fixed value                                  | Sets the method to select the fixed setpoints:                                                         |  |
|           | selection method                                                   | 1: Direct selection (factory setting)                                                                  |  |
|           |                                                                    | 2: Binary selection                                                                                    |  |
| p2220[0n] | BI: Technology controller fixed value selection bit 0 3            | Sets the signal source to select a fixed value of the                                                  |  |
|           | ue selection bit 0 3                                               | technology controller.                                                                                 |  |
| p2223[0n] |                                                                    | Factory setting: 0                                                                                     |  |
| r2224     | CO: Technology controller fixed val-<br>ue active [%]              | Display and connector output for the selected and active fixed value of the technology controller.     |  |
| r2225.0   | CO/BO: Technology controller fixed value selection status word [%] | Display and BICO output for the status word of the fixed value selection of the technology controller. |  |
| r2229     | Technology controller number ac-<br>tual                           | Displays the number of the selected fixed setpoint of the technology controller.                       |  |

| Parameter | Description                                                                          | Setting                                                                                                                                          |  |
|-----------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| r2231     | Technology controller motorized<br>potentiometer setpoint memory<br>[%]              | Displays the setpoint memory for the motorized potentiometer of the technology controller.                                                       |  |
| p2235[0n] | BI: Technology controller motor-<br>ized potentiometer, setpoint, raise              | Sets the signal source to continually increase the setpoint for the motorized potentiometer of the technology controller.                        |  |
|           |                                                                                      | Factory setting: 0                                                                                                                               |  |
| p2236[0n] | BI: Technology controller motor-<br>ized potentiometer, setpoint, lower              | Sets the signal source to continually reduce the set-<br>point for the motorized potentiometer of the tech-<br>nology controller.                |  |
|           |                                                                                      | Factory setting: 0                                                                                                                               |  |
| p2237[0n] | Technology controller motorized potentiometer maximum value [%]                      | Sets the maximum value for the motorized poten-<br>tiometer of the technology controller.                                                        |  |
|           |                                                                                      | Factory setting: 100                                                                                                                             |  |
| p2238[0n] | Technology controller motorized potentiometer minimum value [%]                      | Sets the minimum value for the motorized potenti-<br>ometer of the technology controller.                                                        |  |
|           |                                                                                      | Factory setting: -100                                                                                                                            |  |
| p2240[0n] | Technology controller motorized potentiometer start value [%]                        | Sets the starting value for the motorized potenti-<br>ometer of the technology controller.                                                       |  |
|           |                                                                                      | Factory setting: 0                                                                                                                               |  |
| r2245     | CO: Technology controller motor-<br>ized potentiometer, setpoint be-<br>fore RFG [%] | Displays the effective setpoint in front of the inter-<br>nal motorized potentiometer ramp-function gener-<br>ator of the technology controller. |  |
| p2247[0n] | Technology controller motorized potentiometer ramp-up time [s]                       | Sets the ramp-up time and ramp-down time for the internal ramp-function generator for the motorized                                              |  |
| p2248[0n] | Technology controller motorized potentiometer ramp-down time [s]                     | potentiometer of the technology controller.<br>Factory setting: 10                                                                               |  |
| r2250     | CO: Technology controller motor-<br>ized potentiometer, setpoint after<br>RFG [%]    | Displays the effective setpoint after the internal ramp-function generator for the motorized poten-<br>tiometer of the technology controller.    |  |

#### PID technology controller, motorized potentiometer

#### **Further information**

For additional information refer to the function diagrams 7950 ... 7958 of the List Manual.

You will find additional information on the following PID controller components in the Internet at:

- Setpoint input: Analog value or fixed setpoint
- Setpoint channel: Scaling, ramp-function generator and filter
- Actual value channel: Filter, limiting and signal processing
- PID controller: Principle of operation of the D component, inhibiting the I component and the control sense
- Enable, limiting the controller output and fault response

FAQ (https://support.industry.siemens.com/cs/ww/en/view/92556266)

6.18 Motor control

# 6.18 Motor control

#### Overview



The converter has two alternative methods to ensure the motor speed follows the configured speed setpoint:

- U/f control
- Vector control

# 6.18.1 Setting the saturation characteristic of the permanent magnet synchronous motor (third-party motor)

#### Overview

The motor control of the converter requires the simulation of the saturation characteristic "Quadrature axis flux over quadrature axis current" of the permanent magnet synchronous motor.

The saturation characteristics of Siemens motors are stored in the converter.

For non-Siemens motors, you need to set the saturation characteristic using the motor data sheet, for example.

### Precondition

Quick commissioning has been completed.

The saturation characteristic for a third-party motor is available.

#### Procedure

- 1. Determine the following values using the motor data sheet:
  - Set the current value of the saturation characteristic iq[0] ... iq[4].
  - Determine the flux values psiq[0] ... psiq[4] associated with the current values.

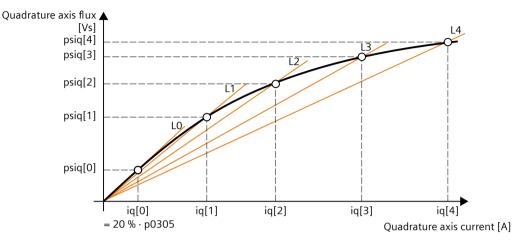



Figure 6-1 Saturation characteristic of the permanent magnet synchronous motor

If the saturation characteristic of the third-party motor is not available, leave parameters p356 and p362 ... p369 in their factory settings.

Commissioning usually leads to a satisfactory control behavior only with a correctly set saturation characteristic.

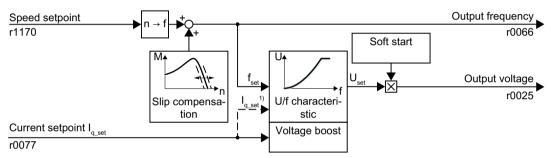
- 2. Set  $p0356 = psiq[0] / (20 \% \cdot p0305)$
- 3. Set the following parameters:
  - $p0362 = psiq[1] / (p0356 \cdot p0305) \cdot 100 \%$
  - p0363 = psiq[2] / (p0356 · p0305) · 100 %
  - $p0364 = psiq[3] / (p0356 \cdot p0305) \cdot 100 \%$
  - $p0365 = psiq[4] / (p0356 \cdot p0305) \cdot 100 \%$
  - p0366 = iq[1] / p0305 · 100 %
  - p0367 = iq[2] / p0305 · 100 %
  - $p0368 = iq[3] / p0305 \cdot 100 \%$
  - p0369 = iq[4] / p0305 · 100 %

Alternatively, you can calculate parameters p0362 ... p0365 based on inductances L1 ... L4:

- $p0362 = L1 / p0356 \cdot p0366$
- p0363 = L2 / p0356 · p0367
- p0364 = L3 / p0356 · p0368
- p0365 = L4 / p0356 · p0369

#### 6.18 Motor control

## Result


The parameters for emulating the saturation characteristic are defined in the converter in ascending order:

- 20 % < p0362 < p0363 < p0364 < p0365
- 20 % < p0366 < p0367 < p0368 < p0369</li>

The converter extrapolates the characteristic curve linearly for currents iq > iq[4].

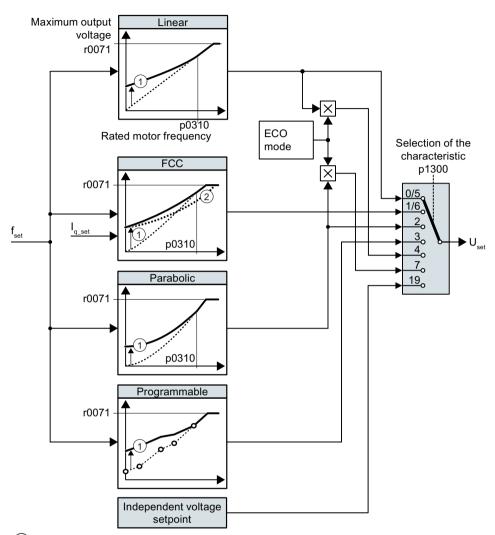
# 6.18.2 U/f control

#### Overview



<sup>1)</sup> In the U/f control variant, "flux current control (FCC)," the converter controls the motor current (starting current) at low speeds

The U/f control is a speed feedforward control with the following properties:


- The converter sets the output voltage on the basis of the U/f characteristic.
- The output frequency is essentially calculated from the speed setpoint and the number of pole pairs of the motor.
- The slip compensation corrects the output frequency depending on the load and thus increases the speed accuracy.
- The omission of a control loop means that the U/f control is stable in all cases.
- In applications with higher speed accuracy requirements, a load-dependent voltage boost can be selected (flux current control, FCC)

For operation of the motor with U/f control, you must set at least the following subfunctions appropriate for your application:

- U/f characteristic
- Voltage boost

# 6.18.2.1 Characteristics of U/f control

The converter has different U/f characteristics.



① The voltage boost of the characteristic optimizes the speed control at low speeds

2 With the flux current control (FCC), the converter compensates for the voltage drop in the stator resistor of the motor

The converter increases its output voltage to the maximum possible output voltage. The maximum possible output voltage of the converter depends on the line voltage.

When the maximum output voltage is reached, the converter only increases the output frequency. At this point, the motor enters the field weakening range: At constant torque, the slip decreases quadratically as the speed increases.

The value of the output voltage at the rated motor frequency also depends on the following variables:

- Ratio between the converter size and the motor size
- Line voltage

## 6.18 Motor control

- Line impedance
- Actual motor torque

The maximum possible output voltage as a function of the input voltage is provided in the technical data.

Technical data (Page 399)

# 6.18.2.2 Selecting the U/f characteristic

| Table 6-5 Linear and parabolic characteristics | S |
|------------------------------------------------|---|
|------------------------------------------------|---|

| Requirement                                             | Application examples                                                                                                                             | Remark                                                                                                                                                                                                                                                                                | Character-<br>istic                                           | Parameter              |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------|
| The required tor-<br>que is independent<br>of the speed | Conveyor belts, roller<br>conveyors, chain con-<br>veyors, eccentric worm<br>pumps, compressors,<br>extruders, centrifuges,<br>agitators, mixers | -<br>The converter equalizes the voltage drops across<br>the stator resistance. Recommended for motors<br>less than 7.5 kW.<br>Precondition: You have set the motor data accord-<br>ing to the rating plate and have performed the<br>motor identification after quick commissioning. | Linear<br>Linear with<br>Flux Cur-<br>rent Con-<br>trol (FCC) | p1300 = 0<br>p1300 = 1 |
| The required tor-<br>que increases with<br>the speed    | Centrifugal pumps, ra-<br>dial fans, axial fans                                                                                                  | Lower losses in the motor and converter than for a linear characteristic.                                                                                                                                                                                                             | Parabolic                                                     | p1300 = 2              |

Table 6-6Characteristics for special applications

| Requirement                                                                                       | Application examples                            | Remark                                                                                                                                                                                                                        | Character-<br>istic                           | Parameter                    |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------|
| Applications with a<br>low dynamic re-<br>sponse and con-<br>stant speed                          | Centrifugal pumps, ra-<br>dial fans, axial fans | If the speed setpoint is reached, and remains un-<br>changed for 5 seconds, then the converter reduces<br>its output voltage.<br>As a consequence, the ECO mode saves energy<br>with respect to the parabolic characteristic. | ECO mode                                      | p1300 = 4<br>or<br>p1300 = 7 |
| The converter must<br>maintain the motor<br>speed constant for<br>the longest possi-<br>ble time. | Drives in the textile sec-<br>tor               | When reaching the maximum current limit, the converter only reduces the output voltage, but not the frequency.                                                                                                                | Precise fre-<br>quency<br>characteris-<br>tic | p1300 = 5<br>or<br>p1300 = 6 |
| Freely adjustable U/<br>f characteristic                                                          | -                                               | -                                                                                                                                                                                                                             | Adjustable<br>characteris-<br>tic             | p1300 = 3                    |
| U/f characteristic<br>with independent<br>voltage setpoint                                        | -                                               | The interrelationship between the frequency and voltage is not calculated in the converter, but is specified by the user.                                                                                                     | Independ-<br>ent voltage<br>setpoint          | p1300 = 19                   |

Additional information on U/f characteristics can be found in the parameter list and in the function diagrams of the List Manual.

# 6.18.2.3 Optimizing motor starting

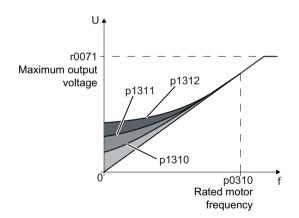
#### Overview

After selection of the U/f characteristic, no further settings are required in most applications.

In the following circumstances, the motor cannot accelerate to its speed setpoint after it has been switched on:

- Load moment of inertia too high
- Load torque too large
- Ramp-up time p1120 too short

To improve the starting behavior of the motor, a voltage boost can be set for the U/f characteristic at low speeds.


#### Precondition

The ramp-up time of the ramp-function generator is, depending on the motor rated power, 1 s (< 1 kW) ... 10 s (> 10 kW).

## **Function description**

#### Setting the voltage boost for U/f control

The converter boosts the voltage corresponding to the starting currents p1310 ... p1312.



Increase parameter values p1310 ... p1312 in steps of  $\leq$  5%. Excessively high values in p1310 ... p1312 can cause the motor to overheat and stop (trip) the converter due to overcurrent.

If message A07409 appears, it is not permissible that you further increase the value of any of the parameters.

#### Procedure

- 1. Switch on the motor with a setpoint of a few revolutions per minute.
- 2. Check whether the motor rotates smoothly.
- 3. If the motor does not rotate smoothly, or even remains stationary, increase the voltage boost p1310 until the motor runs smoothly.

## 6.18 Motor control

- 4. Accelerate the motor to the maximum speed with maximum load.
- 5. Check that the motor follows the setpoint.
- 6. If necessary, increase the voltage boost p1311 until the motor accelerates without problem.

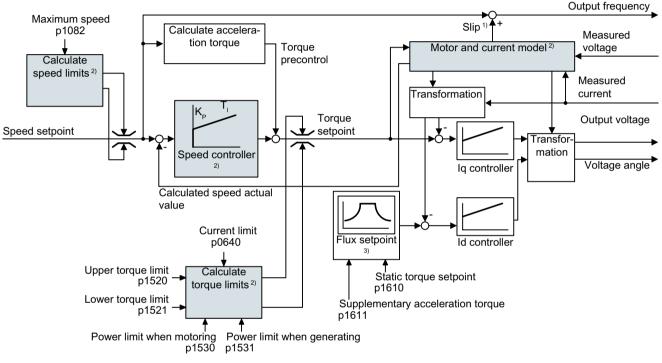
In applications with a high break loose torque, you must also increase parameter p1312 in order to achieve a satisfactory motor response.

You have set the voltage boost.

#### Parameters

| Parameter | Description                                               | Setting                                                                                                              |
|-----------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| r0071     | Maximum output voltage [V]                                | Displays the maximum output voltage.                                                                                 |
| p0310[0n] | Rated motor frequency [Hz]                                | Sets the rated motor frequency.                                                                                      |
|           |                                                           | Factory setting: 0                                                                                                   |
| p1310[0n] | Starting current (voltage boost)<br>permanent [%]         | Defines the voltage boost as a [%] referred to the rated motor current (p0305).                                      |
|           |                                                           | Factory setting: 50                                                                                                  |
| p1311[0n] | Starting current (voltage boost)<br>when accelerating [%] | p1311 only results in a voltage boost when accelerating and generates a supplementary torque to accelerate the load. |
|           |                                                           | Factory setting: 0                                                                                                   |
| p1312[0n] | Starting current (voltage boost)<br>when starting [%]     | Setting for an additional voltage boost when pow-<br>ering-up, however, only for the first acceleration<br>phase.    |
|           |                                                           | Factory setting: 0                                                                                                   |

# **Further information**


For further information refer to the parameter list and the function diagrams 6301 and 6310 of the List Manual.

# 6.18.3 Sensorless vector control with speed controller

# 6.18.3.1 Structure of vector control without encoder (sensorless)

#### Overview

The vector control comprises closed-loop current control and a higher-level closed-loop speed control.



- <sup>1)</sup> for asynchronous motors
- <sup>2)</sup> Settings that are required

Using the motor model, the converter calculates the following closed-loop control signals from the measured phase currents and the output voltage:

- Current component I<sub>a</sub>
- Current component I<sub>d</sub>
- Speed actual value

The setpoint of the current component  $I_d$  (flux setpoint) is obtained from the motor data. For speeds above the rated speed, the converter reduces the flux setpoint along the field weakening characteristic.

When the speed setpoint is increased, the speed controller responds with a higher setpoint for current component  $I_q$  (torque setpoint). The closed-loop control responds to a higher torque setpoint by adding a higher slip frequency to the output frequency. The higher output frequency also results in a higher motor slip, which is proportional to the accelerating torque.  $I_q$  and  $I_d$ 

#### 6.18 Motor control

controllers keep the motor flux constant using the output voltage, and adjust the matching current component  $I_{\rm q}$  in the motor.

#### Settings that are required

Restart quick commissioning and select the vector control in quick commissioning.

Quick commissioning (Page 119)

In order to achieve a satisfactory control response, as a minimum you must set the partial functions – shown with gray background in the diagram above – to match your particular application:

- Motor and current model: In the quick commissioning, correctly set the motor data on the rating plate corresponding to the connection type (Y/Δ), and carry out the motor data identification routine at standstill.
- **Speed limits** and **torque limits**: In the quick commissioning, set the maximum speed (p1082) and current limit (p0640) to match your particular application. When exiting quick commissioning, the converter calculates the torque and power limits corresponding to the current limit. The actual torque limits are obtained from the converted current and power limits and the set torque limits.
- **Speed controller**: Start the rotating measurement of the motor data identification. You must manually optimize the controller if the rotating measurement is not possible.

# 

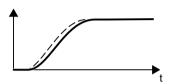
#### The load falls due to incorrect closed-loop control settings

For encoderless vector control, the converter calculates the actual speed based on an electric motor model. In applications with pulling loads - e.g. hoisting gear, lifting tables or vertical conveyors - an incorrectly set motor model or other incorrect settings can mean that the load falls. A falling load can result in death or serious injury.

- Correctly set the motor data during the quick commissioning.
- Carry out the motor data identification.
- Correctly set the "Motor holding brake" function.
- For pulling loads, carefully comply with the recommended settings for vector control.
   Advanced settings (Page 289)

#### **Further information**

For further information refer to the function diagrams 6040, 6050, and 6060 of the List Manual.

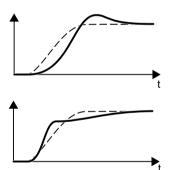

# 6.18.3.2 Optimizing the closed-loop speed controller

## Optimum control response - post optimization not required

Preconditions for assessing the controller response:

- The moment of inertia of the load is constant and does not depend on the speed.
- The converter does not reach the set torque limits during acceleration.
- You operate the motor in the range 40% ... 60% of its rated speed.

If the motor exhibits the following response, the speed control is well set and you do not have to adapt the speed controller manually:




The speed setpoint (broken line) increases with the set ramp-up time and rounding.

The speed actual value follows the setpoint without any overshoot.

## **Control optimization required**

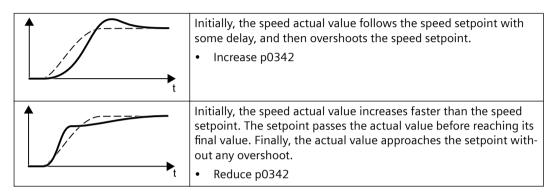
In some cases, the self optimization result is not satisfactory, or self optimization is not possible as the motor cannot freely rotate.



Initially, the speed actual value follows the speed setpoint with some delay, and then overshoots the speed setpoint.

First, the actual speed value increases faster than the speed setpoint. Before the setpoint reaches its final value, it passes the actual value. Finally, the actual value approaches the setpoint without any significant overshoot.

In the two cases describe above, we recommend that you manually optimize the speed control.


## Optimizing the speed controller

#### Requirements

- Torque precontrol is active: p1496 = 100%.
- The load moment of inertia is constant and independent of the speed.
- The converter requires 10% ... 50% of the rated torque to accelerate. When necessary, adapt the ramp-up and ramp-down times of the ramp-function generator (p1120 and p1121).

#### Procedure

- 1. Switch on the motor.
- 2. Enter a speed setpoint of approximately 40% of the rated speed.
- 3. Wait until the actual speed has stabilized.
- 4. Increase the setpoint up to a maximum of 60% of the rated speed.
- 5. Monitor the associated characteristic of the setpoint and actual speed.
- 6. Optimize the controller by adapting the ratio of the moments of inertia of the load and motor (p0342):



- 7. Switch off the motor.
- 8. Set p0340 = 4. The converter again calculates the speed controller parameters.
- 9. Switch on the motor.
- 10. Over the complete speed range check as to whether the speed control operates satisfactorily with the optimized settings.

You have optimized the speed controller.

#### 

When necessary, set the ramp-up and ramp-down times of the ramp-function generator (p1120 and p1121) back to the value before optimization.

## Mastering critical applications

The speed control can become unstable for drives with a high load moment of inertia and gearbox backlash or a coupling between the motor and load that can possibly oscillate. In this case, we recommend the following settings:

- Increase p1452 (smoothing the speed actual value).
- Increase p1472 (integral time  $T_1$ ):  $T_1 \ge 4 \cdot p1452$
- If, after these measures, the speed controller does not operate with an adequate dynamic performance, then increase p1470 (gain K<sub>P</sub>) step-by-step.

## Parameters

#### Encoderless speed control

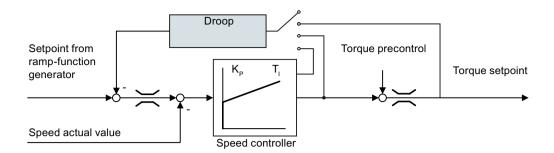
| Parameter | Description                                                                   | Setting                                                                                                         |  |
|-----------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| p0342[0n] | Ratio between the total and motor moment of inertia                           | Sets the ratio of moment of inertia load + motor to moment of inertia of motor without load.                    |  |
|           |                                                                               | Factory setting: 1                                                                                              |  |
| p1452[0n] | Speed controller actual speed val-<br>ue smoothing time (encoderless)<br>[ms] | Sets the smoothing time for the actual speed of the speed controller for encoderless closed-loop speed control. |  |
|           |                                                                               | Factory setting: 10                                                                                             |  |
| p1470[0n] | Speed controller encoderless oper-<br>ation P gain                            | • Sets the P gain for encoderless operation for the speed controller.                                           |  |
|           |                                                                               | Factory setting: 0.3                                                                                            |  |
| p1472[0n] | Speed controller encoderless oper-<br>ation integral time [ms]                | Set the integral time for encoderless operation for the speed controller.                                       |  |
|           |                                                                               | Factory setting: 20                                                                                             |  |
| p1496[0n] | Acceleration precontrol scaling [%]                                           | Sets the scaling for the acceleration precontrol of the speed/velocity controller.                              |  |
|           |                                                                               | Factory setting: 0                                                                                              |  |

## 6.18.3.3 Advanced settings

## K<sub>P</sub> and T<sub>I</sub> adaptation

 $K_p$  and  $T_1$  adaptation suppress speed control oscillations that may occur. The "rotating measurement" of the motor data identification optimizes the speed controller. If you have performed the rotating measurement, then the  $K_{p}$ - and  $T_n$  adaptation has been set.

You can find additional information in the List Manual:


• Vector control with speed controller: Function diagram 6050

## Droop

For mechanically coupled drives, there is the risk that the drives oppose one another: Small deviations in the speed setpoint or actual value of the coupled drives can mean that the drives are operated with significantly different torques.

The droop function ensures even torque distribution between several mechanically coupled drives.

The droop function reduces the speed setpoint as a function of the torque setpoint.



When droop is active, the ramp-function generators of all of the coupled drives must be set to have identical ramp-up and ramp-down times as well as rounding-off.

| Parameter | Description                                    | Setting                                                                                                                 |
|-----------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| r1482     | CO: Speed controller I torque out-<br>put [Nm] | Display and connector output for the torque set-<br>point at the output of the I speed controller.                      |
| p1488[0n] | Droop input source                             | Sets the source for droop feedback.                                                                                     |
|           |                                                | 0: Droop feedback not connected (factory setting)                                                                       |
|           |                                                | 1: Droop from the torque setpoint                                                                                       |
|           |                                                | 2: Droop from the speed control output                                                                                  |
|           |                                                | 3: Droop from the integral output, speed controller                                                                     |
| p1489[0n] | Droop feedback scaling                         | Sets the scaling for the droop feedback                                                                                 |
|           |                                                | A value of 0.05 means: At the rated motor torque,<br>the converter reduces the speed by 5% of the rated<br>motor speed. |
|           |                                                | Factory setting: 0.05                                                                                                   |
| r1490     | CO: Droop feedback speed reduc-<br>tion [rpm]  | Displays the output signal of the droop calculation.                                                                    |
| p1492[0n] | BI: Droop feedback enable                      | Enables the droop to be applied to the speed/veloc-<br>ity setpoint.                                                    |
|           |                                                | Factory setting: 0                                                                                                      |

You can find additional information in the List Manual, function block diagram 6030.

# Special settings for a pulling load

For a pulling load, e.g. a hoisting gear, a permanent force is exerted on the motor, even when the motor is stationary.

If you use encoderless vector control with a pulling load, the following settings are required:

• Set the following parameters:

| Parameter | Description                                   | Setting                                                                                                                                |
|-----------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| p1750[0n] | Motor model configuration                     | Sets the configuration for the motor model.<br>Bit 07 = 1: Use speed switchover limits that are<br>less sensitive to external effects. |
| p1610[0n] | Static torque setpoint (encoder-<br>less) [%] | Sets the static torque setpoint for sensorless vec-<br>tor control in the low speed range.                                             |
|           |                                               | Set a value which is higher than the maximum load torque that occurs.                                                                  |
|           |                                               | Factory setting: 50                                                                                                                    |

- When opening the motor holding brake, enter a speed setpoint > 0. For speed setpoint = 0, and with the motor holding brake open, the load drops because the asynchronous motor rotates with the slip frequency as a result of the pulling load.
- Set the ramp-up and ramp-down times  $\leq 10$  s in the ramp-function generator.

## 6.18.3.4 Optimizing the operation of the permanent magnet synchronous motor

## Overview

An unfavorable parameter setting can lead to malfunctions or unwanted behavior of the motor during operation of the permanent magnet synchronous motor.

## Description

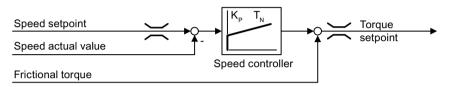
| Problem                                                                                                                                         | Possible cause                                                                                    | Solution                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| The converter reports the<br>F07807 fault (fault current, over-                                                                                 | The value of the rated motor volt-<br>age is too high.                                            | 1. Check the motor wiring and insulation resistance.                                                                                    |
| current or ground fault) during the standstill measurement of                                                                                   |                                                                                                   | 2. Start quick commissioning.                                                                                                           |
| the motor identification or during<br>the pole position identification.                                                                         |                                                                                                   | 3. Reduce the rated motor volt-<br>age p0304 by 5 V 10 V.                                                                               |
|                                                                                                                                                 |                                                                                                   | <ol> <li>Restart the standstill meas-<br/>urement of the motor identi-<br/>fication or the pole position<br/>identification.</li> </ol> |
|                                                                                                                                                 |                                                                                                   | 5. If the converter reports the F07807 fault again, go back to step 2.                                                                  |
| The motor current increases sig-<br>nificantly when operating at low<br>speeds continually, despite no<br>mechanical problems being<br>present. | You are operating the motor con-<br>tinuously at a speed < p1755 or <<br>15 % of the rated speed. | Set p1080 > p1755.                                                                                                                      |

# Advanced commissioning

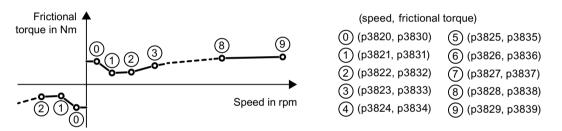
# 6.18 Motor control

| Problem                                            | Possible cause                                                                        | Solution                                                                                              |
|----------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| The converter signals one of the following faults: | The motor has significant pole sa-<br>liency.                                         | Change the PolID technique:<br>p1980 = 4 or p1980 =10.                                                |
| <ul><li>F07967</li><li>F07969</li></ul>            | The current is too high during pole position identification.                          | Decrease the value of p329 incre-<br>mentally by 10 %.                                                |
| The motor stalls or starts with dif-<br>ficulty.   | The converter does not generate enough starting torque                                | Increase the value of p1610 or/<br>and p1611 incrementally by<br>10 %.                                |
|                                                    |                                                                                       | Let the motor cool down before each start attempt.                                                    |
|                                                    | Motor is oversaturated.                                                               | Decrease p1610 and p1611 in-<br>crementally by 10 %.                                                  |
|                                                    |                                                                                       | Increase ramp-up time p1120.                                                                          |
|                                                    |                                                                                       | Increase initial rounding time p1130.                                                                 |
| The motor speed tends to oscil-<br>late.           | The transition from open loop to closed loop phase during acceleration is not stable. | Increase p1755 incrementally by<br>approx. 10 % until the motor ac-<br>celerates smoothly and stably. |
|                                                    | The speed controller gain is too high.                                                | Optimize the speed controller.                                                                        |
| Motor overspeed                                    | The speed overshoots after the motor accelerates.                                     | Increase ramp-up time p1120 or final rounding time p1131.                                             |
|                                                    |                                                                                       | Optimize the speed controller.                                                                        |

# Parameters


| Number   | Name                                              | Factory setting               |
|----------|---------------------------------------------------|-------------------------------|
| p0304[M] | Rated motor voltage                               | 0 V                           |
| p0305[M] | Rated motor current                               | 0 A                           |
| p0307[M] | Rated motor power                                 | 0 kW                          |
| p0310[M] | Rated motor frequency                             | 0 Hz                          |
| p0311[M] | Rated motor speed                                 | 0 rpm                         |
| p0314[M] | Motor pole pair number                            | 0                             |
| p0316[M] | Motor torque constant                             | 0 Nm/A                        |
| p0329[M] | Motor pole position identification current        | 0 A                           |
| p1080[D] | Minimum speed                                     | 0 rpm                         |
| p1120[C] | Ramp-function generator ramp-up time              | Dependent on rat-<br>ed power |
| p1131[C] | Ramp-function generator final rounding time       | 0 s                           |
| p1610[D] | Torque setpoint static (sensorless)               | 50 %                          |
| p1611[D] | Additional acceleration torque (sensorless)       | 30 %                          |
| p1755[D] | Motor model changeover speed sensorless operation | 210000 rpm                    |
| p1980    | PolID technique                                   | 4                             |

## 6.18.3.5 Friction characteristic


## Function

In many applications, e.g. applications with geared motors or belt conveyors, the friction torque of the load is not negligible.

The converter provides the possibility of precontrolling the torque setpoint, bypassing the speed controller with the friction torque. The precontrol reduces overshooting of the speed after speed changes.



The converter calculates the current friction torque from a friction characteristic with 10 intermediate points.



The intermediate points of the friction characteristic are defined for positive speeds. In the negative direction of rotation, the converter uses the intermediate points with a negative sign.

## **Recording a friction characteristic**

After quick commissioning, the converter sets the speeds of the intermediate points to values suitable for the rated speed of the motor. The friction torque of all intermediate points is still equal to zero. On request, the converter records the friction characteristic: The converter accelerates the motor step by step up to the rated speed, measures the friction torque and writes the friction torque into the intermediate points of the friction characteristic.

#### Precondition

The motor is permitted to accelerate up to the rated speed without endangering persons or property.

#### Procedure

- 1. Set p3845 = 1: The converter accelerates the motor successively in both directions of rotation and averages the measurement results of the positive and negative directions.
- 2. Switch on the motor (ON/OFF1 = 1).
- The converter accelerates the motor. During measurement, the converter signals the alarm A07961. When the converter has determined all the intermediate points of the friction characteristic without fault code F07963, the converter stops the motor.

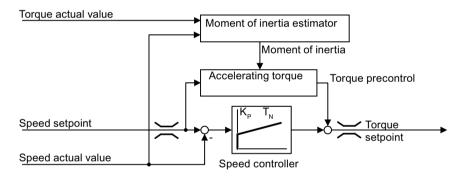
You have recorded the friction characteristic.  $\Box$ 

## Adding friction characteristic for the torque setpoint

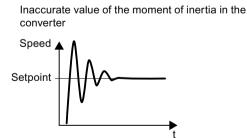
If you enable the friction characteristic (p3842 = 1), the converter adds the output of the friction characteristic r3841 to the torque setpoint.

## Parameters

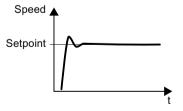
| Parameter                  | Description                                                     | Setting                                                                                               |
|----------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| p3820[0n]<br><br>p3839[0n] | Intermediate points of the friction<br>characteristic [rpm; Nm] | The friction characteristic is defined by 10 value pairs.                                             |
| r3840 <b>.</b> 08          | CO/BO: Friction characteristic sta-<br>tus word                 | Display and BICO output for the status word of the friction characteristic.                           |
|                            |                                                                 | .00 1 signal: Friction characteristic OK                                                              |
|                            |                                                                 | .01 1 signal: Determination of the friction charac-<br>teristic is active                             |
|                            |                                                                 | .02 1 signal: Determination of the friction charac-<br>teristic is complete                           |
|                            |                                                                 | .03 1 signal: Determination of the friction charac-<br>teristic has been aborted                      |
|                            |                                                                 | .08 1 signal: Friction characteristic positive direc-<br>tion                                         |
| r3841                      | CO: Friction characteristic output<br>[Nm]                      | Display and connector output for the torque of the friction characteristic dependent on the speed.    |
| p3842                      | Friction characteristic activation                              | Setting to activate and deactivate the friction characteristic.                                       |
|                            |                                                                 | 0: Friction characteristic deactivated (factory set-<br>ting)<br>1: Friction characteristic activated |
| p3845                      | Friction characteristic record acti-                            | Setting for the friction characteristic record.                                                       |
|                            | vation                                                          | 0: Friction characteristic plot deactivated (factory setting)                                         |
|                            |                                                                 | 1: Friction characteristic plot activated, both direc-<br>tions                                       |
|                            |                                                                 | 2: Friction characteristic plot activated, positive di-<br>rection                                    |
|                            |                                                                 | 3: Friction characteristic plot activated, negative di-<br>rection                                    |


| Parameter | Description                                                   | Setting                                                                                                                                     |
|-----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| p3846[0n] | Friction characteristic record ramp-<br>up/ramp-down time [s] | Sets the ramp-up/ramp-down time of the ramp-up/<br>ramp-down function generator to automatically re-<br>cord the friction characteristic.   |
|           |                                                               | Factory setting: 10                                                                                                                         |
| p3847[0n] | Friction characteristic record warm-                          | Sets the warm-up time.                                                                                                                      |
|           | up time [s]                                                   | At the start of automatic plotting, the converter accelerates the motor up to the speed = p3829 and keeps the speed constant for this time. |
|           |                                                               | Factory setting: 0                                                                                                                          |

Further information on this topic is provided in the List Manual.

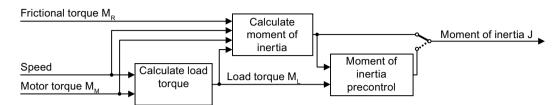

## 6.18.3.6 Moment of inertia estimator

## Background


From the load moment of inertia and the speed setpoint change, the converter calculates the accelerating torque required for the motor. Via the speed controller precontrol, the accelerating torque specifies the main percentage of the torque setpoint. The speed controller corrects inaccuracies in the precontrol (feed-forward control).



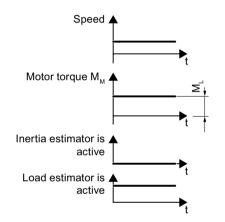
The more precise the value of the moment of inertia in the converter, the lower the overshoot after speed changes.




The moment of inertia value in the converter corresponds to reality



## Function

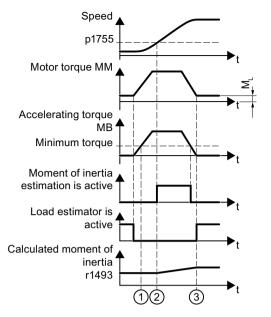

From the actual speed, the actual motor torque and the frictional torque of the load, the converter calculates the total moment of inertia of the load and motor.



When using the moment of inertia estimator, we recommend that you also activate the friction characteristic.

Friction characteristic (Page 293)

#### How does the converter calculate the load torque?




At low speeds, the converter calculates the load torque  $M_L$  from the actual motor torque.

The calculation takes place under the following conditions:

- Speed  $\geq$  p1226
- Acceleration setpoint < 8 1/s<sup>2</sup> (≜ speed change 480 rpm per s)
- Acceleration × moment of inertia (r1493) < 0.9 × p1560

How does the converter calculate the moment of inertia?



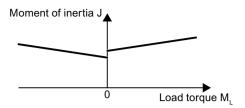
For higher speed changes, the converter initially calculates the accelerating torque  $M_B$  as difference between the motor torque  $M_M$ , load torque  $M_L$  and frictional torque  $M_R$ :

#### $M_{B} = M_{M} - M_{L} - M_{R}$

Moment of inertia J of the motor and load is obtained from the accelerating torque  $M_B$  and angular acceleration  $\alpha$  ( $\alpha$  = rate at which the speed changes):

 $J=M_{\scriptscriptstyle B}\,/\,\alpha$ 

If all of the following conditions are met, the converter calculates the moment of inertia:


- (1) The rated accelerating torque  $M_B$  must satisfy the following two conditions:
  - The sign of  $M_B$  is the same as the direction of the actual acceleration
  - $M_B > p1560 \times rated motor torque (r0333)$
- ② speed > p1755
- The converter has calculated the load torque in at least one direction of rotation.
- Acceleration setpoint > 8 1/s<sup>2</sup> (≜ speed change 480 rpm per s)

(3) The converter calculates the load torque again after acceleration.

#### Moment of inertia precontrol

In applications where the motor predominantly operates with a constant speed, the converter can only infrequently calculate the moment of inertia using the function described above. Moment of inertia precontrol is available for situations such as these. The moment of inertia precontrol assumes that there is an approximately linear relationship between the moment of inertia and the load torque.

Example: For a horizontal conveyor, in a first approximation, the moment of inertia depends on the load.



The relationship between load torque and torque is saved in the converter as linear characteristic.

- In a positive direction of rotation: Moment of inertia J = p5312 × load torque M<sub>1</sub> + p5313
- In a negative direction of rotation: Moment of inertia J =  $p5314 \times load$  torque M<sub>L</sub> + p5315

You have the following options to determine the characteristic:

- You already know the characteristic from other measurements. In this case, you must set the parameters to known values when commissioning the system.
- The converter iteratively determines the characteristic by performing measurements while the motor is operational.

#### Activating the moment of inertia estimator

The moment of inertia estimator is deactivated in the factory setting. p1400.18 = 0, p1400.20 = 0, p1400.22 = 0.

If you performed the rotating measurement for the motor identification during quick commissioning, we recommend leaving the moment of inertia estimator deactivated.

#### Preconditions

- You have selected encoderless vector control.
- The load torque must be constant whilst the motor accelerates or brakes. Typical of a constant load torque are conveyor applications and centrifuges, for example. Fan applications, for example, are not permitted.
- The speed setpoint is free from superimposed unwanted signals.
- The motor and load are connected to each other in a force-locked way. Drives with slip between the motor shaft and load are not permitted, e.g. as a result of loose or worn belts.

If the conditions are not met, you must not activate the moment of inertia estimator.

#### Procedure

- 1. Set p1400.18 = 1
- 2. Check:  $p1496 \neq 0$
- 3. Activate the acceleration model of the speed controller pre-control: p1400.20 = 1.

You have activated the moment of inertia estimator.

# The most important settings

| Parameter | Description                                             | Setting                                                                                                                                                                                   |  |
|-----------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| r0333[0n] | Rated motor torque [Nm]                                 | Displays the rated motor torque.                                                                                                                                                          |  |
| p0341[0n] | Motor moment of inertia [kgm <sup>2</sup> ]             | Sets the motor moment of inertia (without load).                                                                                                                                          |  |
|           |                                                         | Note: The converter sets the parameter when se-<br>lecting a listed motor. The parameter is then write-<br>protected.                                                                     |  |
|           |                                                         | Factory setting: 0                                                                                                                                                                        |  |
| p0342[0n] | Ratio between the total and motor moment of inertia     | Sets the ratio of moment of inertia load + motor to moment of inertia of motor without load.                                                                                              |  |
|           |                                                         | Factory setting: 1                                                                                                                                                                        |  |
| p1400[0n] | Speed control configuration                             | Sets the configuration for the closed-loop speed control.                                                                                                                                 |  |
|           |                                                         | .18 1 signal: Moment of inertia estimator active                                                                                                                                          |  |
|           |                                                         | .20 1 signal: Acceleration model on                                                                                                                                                       |  |
|           |                                                         | .22 1 signal: Moment of inertia estimator retain value when motor switched off                                                                                                            |  |
|           |                                                         | .24 1 signal: Shortened moment of inertia estima-<br>tion is active.                                                                                                                      |  |
|           |                                                         | p1400.24 = 1 reduces the duration of the moment of inertia estimation.                                                                                                                    |  |
|           |                                                         | Disadvantage: If the accelerating torque is not con-<br>stant while calculating the moment of inertia, the<br>calculation of the moment of inertia using<br>p1400.24 = 1 is less precise. |  |
| r1407.027 | CO/BO: Status word speed control-<br>ler                | Display and BICO output for the status word of the speed controller.                                                                                                                      |  |
|           |                                                         | .24 1 signal: Moment of inertia estimator is active                                                                                                                                       |  |
|           |                                                         | .25 1 signal: Load estimator is active                                                                                                                                                    |  |
|           |                                                         | .26 1 signal: Moment of inertia estimator is engag-<br>ed                                                                                                                                 |  |
|           |                                                         | .27 1 signal: Shortened moment of inertia estima-<br>tion is active.                                                                                                                      |  |
| r1493     | CO: Moment of inertia total, scaled [kgm <sup>2</sup> ] | Display and connector output for the parameter-<br>ized total moment of inertia.                                                                                                          |  |
|           |                                                         | r1493 = (p0341 × p0342) × p1496                                                                                                                                                           |  |
| p1496[0n] | Acceleration precontrol scaling [%]                     | Sets the scaling for the acceleration precontrol of the speed/velocity controller.                                                                                                        |  |
|           |                                                         | According to rotating measurement of the motor data identification is p1496 = 100%.                                                                                                       |  |
|           |                                                         | Factory setting: 0                                                                                                                                                                        |  |

| Parameter | Description                                                   | Setting                                                                                                           |
|-----------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| p1502[0n] | BI: Freeze moment of inertia esti-<br>mator                   | Sets the signal source to freeze the estimated mo-<br>ment of inertia.                                            |
|           |                                                               | 0 signal: Moment of inertia estimator is active                                                                   |
|           |                                                               | 1 signal: Determined moment of inertia is frozen                                                                  |
|           |                                                               | If the load torque changes when accelerating the motor, set this signal to 0.                                     |
|           |                                                               | Factory setting: 0                                                                                                |
| p1755[0n] | Motor model changeover speed en-<br>coderless operation [rpm] | Defines the switchover between open-loop and closed-loop controlled operation of the encoder-less vector control. |
|           |                                                               | When selecting the closed-loop speed control, the converter sets $p1755 = 13.3\% \times rated$ speed.             |
|           |                                                               | Factory setting: 210000.00                                                                                        |

# Advanced settings

| Parameter | Description                                                                  | Setting                                                                                           |                                                                                                                          |  |
|-----------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|
| p1226[0n] | Threshold for zero speed detection<br>[rpm]                                  | Sets the speed threshold for the standstill identification.                                       |                                                                                                                          |  |
|           |                                                                              | The moment of inertia est<br>load torque for speeds ≥                                             | imator only measures the p1226.                                                                                          |  |
|           |                                                                              | p1226 also defines from v<br>switches-off the motor fo                                            | vhich speed the converter<br>r OFF1 and OFF3.                                                                            |  |
|           |                                                                              | Factory setting: 20                                                                               |                                                                                                                          |  |
| p1560[0n] | Moment of inertia estimator accel-<br>erating torque threshold value [%]     | Sets the threshold for the the moment of inertia es                                               | ne accelerating torque for<br>estimator.                                                                                 |  |
|           |                                                                              | Factory setting: 10                                                                               |                                                                                                                          |  |
| p1561[0n] | Change time for moment of inertia<br>for moment of inertia estimator<br>[ms] | Sets the change time for<br>the moment of inertia<br>for the moment of iner-<br>tia estimator.    | The lower that p1561 or<br>p1562 is, the shorter<br>the moment of inertia<br>estimator measure-                          |  |
|           |                                                                              | Factory setting: 500                                                                              | ments.                                                                                                                   |  |
| p1562[0n] | Change time for the load torque for<br>moment of inertia estimator [ms]      | Sets the change time for<br>the load torque for the<br>moment of inertia esti-<br>mator.          | The larger p1561 or<br>p1562 is, the more accu-<br>rate the results provided<br>by the moment of iner-<br>tia estimator. |  |
|           |                                                                              | Factory setting: 10                                                                               | lia estimator.                                                                                                           |  |
| p1563[0n] | Moment of inertia estimator load<br>torque positive direction of rota-       | Display and connector output for the monitored load torque in the positive direction of rotation. |                                                                                                                          |  |
|           | tion [Nm]                                                                    | Factory setting: 0                                                                                |                                                                                                                          |  |
| p1564[0n] | Moment of inertia estimator load torque negative direction of rota-          | Display and connector ou<br>load torque in the negati                                             |                                                                                                                          |  |
|           | tion [Nm]                                                                    | Factory setting: 0                                                                                |                                                                                                                          |  |

| Parameter | Description                                                             | Setting                                                                                                                                                                                                                               |
|-----------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p5310[0n] | Moment of inertia precontrol con-<br>figuration                         | Configuration of the moment of inertia precontrol when the moment of inertia estimator is active.                                                                                                                                     |
|           |                                                                         | .00 1 signal: Activates calculation of the character-<br>istic (p5312 p5315)                                                                                                                                                          |
|           |                                                                         | .01 1 signal: Activates moment of inertia precontrol                                                                                                                                                                                  |
|           |                                                                         | • p5310.00 = 0, p5310.01 = 0 Deactivating mo-<br>ment of inertia precontrol                                                                                                                                                           |
|           |                                                                         | • p5310.00 = 1, p5310.01 = 0 Adapting the mo-<br>ment of inertia precontrol                                                                                                                                                           |
|           |                                                                         | <ul> <li>p5310.00 = 0, p5310.01 = 1 Activating the moment of inertia precontrol.</li> <li>The characteristic of the moment of inertia precontrol remains unchanged.</li> </ul>                                                        |
|           |                                                                         | <ul> <li>p5310.00 = 1, p5310.01 = 1 Activating the mo-<br/>ment of inertia precontrol. The converter<br/>adapts the characteristic in parallel.</li> </ul>                                                                            |
|           |                                                                         | Factory setting: 0000 bin                                                                                                                                                                                                             |
| r5311[0n] | Moment of inertia precontrol sta-<br>tus word                           | Displays the status word for the moment of inertia precontrol.                                                                                                                                                                        |
|           |                                                                         | .00 1 signal: New measuring points for the charac-<br>teristic of the moment of inertia precontrol are<br>available                                                                                                                   |
|           |                                                                         | .01 1 signal: New parameters are been calculated                                                                                                                                                                                      |
|           |                                                                         | .02 1 signal: Moment of inertia precontrol active                                                                                                                                                                                     |
|           |                                                                         | .03 1 signal: The characteristic in the positive di-<br>rection of rotation has been calculated and is ready                                                                                                                          |
|           |                                                                         | .04 1 signal: The characteristic in the negative di-<br>rection of rotation has been calculated and is ready                                                                                                                          |
|           |                                                                         | .05 1 signal: The converter writes actual results to the parameter                                                                                                                                                                    |
| p5312[0n] | Moment of inertia precontrol line-<br>ar positive [1/s <sup>2</sup> ]   | Sets the linear coefficients for moment of inertia precontrol in the positive direction when the moment of inertia estimator is active. In a positive direction of rotation: Moment of inertia = $p5312 \times load$ torque + $p5313$ |
|           |                                                                         | Factory setting: 0                                                                                                                                                                                                                    |
| p5313[0n] | Moment of inertia precontrol con-<br>stant positive [kgm <sup>2</sup> ] | Sets of the constant co-<br>efficients for moment of<br>inertia precontrol in the<br>positive direction when<br>the moment of inertia<br>estimator is active.                                                                         |
|           |                                                                         | Factory setting: 0                                                                                                                                                                                                                    |

| Parameter | Description                                                             | Setting                                                                                                                                                      |                                                                                               |  |  |
|-----------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|
| p5314[0n] | Moment of inertia precontrol line-<br>ar negative [1/s <sup>2</sup> ]   | Sets the linear coeffi-<br>cients for moment of in-<br>ertia precontrol in the<br>negative direction when<br>the moment of inertia<br>estimator is active.   | In a negative direction<br>of rotation: Moment of<br>inertia = p5314 × load<br>torque + p5315 |  |  |
|           |                                                                         | Factory setting: 0                                                                                                                                           |                                                                                               |  |  |
| p5315[0n] | Moment of inertia precontrol con-<br>stant negative [kgm <sup>2</sup> ] | Sets the constant coeffi-<br>cients for moment of in-<br>ertia precontrol in the<br>negative direction when<br>the moment of inertia<br>estimator is active. |                                                                                               |  |  |
|           |                                                                         | Factory setting: 0                                                                                                                                           |                                                                                               |  |  |

## 6.18.3.7 Pole position identification

#### Overview

The converter must know the pole position of the rotor in the motor in order to be able to control the torque and speed of a synchronous motor.

For encoderless motors, the converter determines the pole position of the motor via a measurement.

#### Precondition

The motor remains at a standstill.

## **Function description**

The pole position of a synchronous motor is the deviation between the magnetic axis in the rotor and the magnetic axis in the stator.

The image below shows you the pole position of a synchronous motor in a simplified cross-section.



For permanent magnet synchronous motors, the following methods are possible for pole position identification:

- p1980 = 1: The most reliable and fastest, but also the loudest method During quick commissioning the converter sets p1980 = 1.
- p1980 = 4: Comparatively quiet method in two steps
- p1980 = 10: Comparatively slow method. This method is only possible if the motor can rotate freely during pole position identification.

If you are using a Siemens motor, then the converter automatically selects the appropriate technique to determine the pole position.

Each time the motor is switched on (ON/OFF1 command), the converter identifies the pole position.

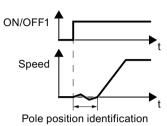
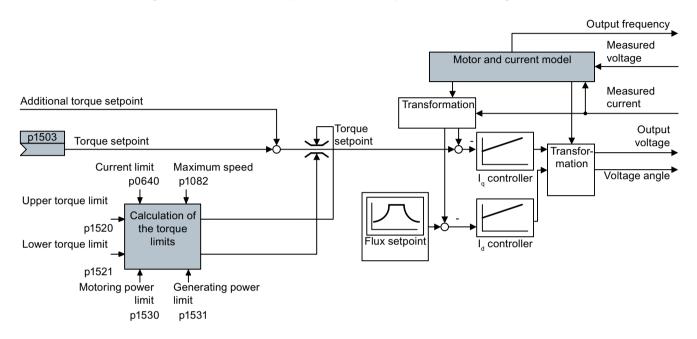



Figure 6-2 Pole position identification after switching on the motor


As a result of the pole position identification, the motor responds to an ON command with a delay of up to 1 second. The motor shaft can rotate slightly during the pole position identification.

### **Parameters**

| Parameters | Description               | Factory setting |
|------------|---------------------------|-----------------|
| p1980      | PolID technique           | 4               |
| r1992      | CO/BO: PolID diagnostics  | -               |
| p1998[D]   | PolID circle center point | 0.0 [A]         |

## 6.18.4 Torque control

Torque control is part of the vector control and normally receives its setpoint from the speed controller output. By deactivating the speed controller and directly entering the torque setpoint, the closed-loop speed control becomes closed-loop torque control. The converter then no longer controls the motor speed, but the torque that the motor generates.



## Typical applications for torque control

The torque control is used in applications where the motor speed is specified by the connected driven load. Examples of such applications include:

- Load distribution between master and slave drives: The master drive is speed controlled, the slave drive is torque controlled.
- Winding machines

## The most important settings

Prerequisites for the correct functioning of the torque control:

- You have set the motor data correctly during the quick commissioning Quick commissioning (Page 119)
- You have performed a motor data identification on the cold motor

| Parameter     | Description                                       | Setting                                                                                                                             |
|---------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| p1300[0n]     | Open-loop/closed-loop control op-<br>erating mode | Sets the open and closed-loop control mode of a drive.                                                                              |
|               |                                                   | 0: U/f control with linear characteristic (factory set-<br>ting)                                                                    |
|               |                                                   | 22: Torque control without speed encoder                                                                                            |
| p0300[0n]<br> | Motor data                                        | Motor data is transferred from the motor rating plate during quick commissioning and calculated with the motor data identification. |
| p0360[0n]     |                                                   |                                                                                                                                     |
| p1511[0n]     | CI: Supplementary torque 1                        | Sets the signal source for supplementary torque 1.                                                                                  |
|               |                                                   | Factory setting: 0                                                                                                                  |
| p1520[0n]     | CO: Torque limit upper [Nm]                       | Sets the fixed upper torque limit.                                                                                                  |
|               |                                                   | Factory setting: 0                                                                                                                  |
| p1521[0n]     | CO: Torque limit lower [Nm]                       | Sets the fixed lower torque limit.                                                                                                  |
|               |                                                   | Factory setting: 0                                                                                                                  |
| p1530[0n]     | Motoring power limit [kW]                         | Sets the power limit when motoring.                                                                                                 |
|               |                                                   | Factory setting: 0                                                                                                                  |
| p1531[0n]     | Regenerative power limit [kW]                     | Sets the regenerative power limit.                                                                                                  |
|               |                                                   | Factory setting: -0.01                                                                                                              |

Additional information about this function is provided in the parameter list and in function diagrams 6030 onwards in the List Manual.

# 6.19 Electrically braking the motor

A differentiation is made between mechanically braking and electrically braking a motor:

- Mechanical brakes are generally motor holding brakes that are closed when the motor is at a standstill. Mechanical operating brakes, that are closed while the motor is rotating are subject to a high wear and are therefore often only used as an emergency brake. If your motor is equipped with a motor holding brake, then you should use the converter functions to control this motor holding brake, see Section Motor holding brake (Page 229).
- The motor is electrically braked by the converter. An electrical braking is completely wearfree. Generally, a motor is switched off at standstill in order to save energy and so that the motor temperature is not unnecessarily increased.

## Braking with the motor in generating mode



If the motor brakes the connected load electrically, it will convert the kinetic energy of the motor to electrical energy. The electrical energy E released on braking the load is proportional to the moment of inertia J of the motor and load and to the square of the speed n. The motor attempts to pass the energy on to the converter.

## 6.19.1 DC braking

DC braking is used for applications where the motor must be actively stopped; however, neither converter energy recovery nor a braking resistor is required for this function. DC braking is not possible with a permanent magnet synchronous motor.

Typical applications for DC braking include:

- Centrifuges
- Saws
- Grinding machines
- Conveyor belts

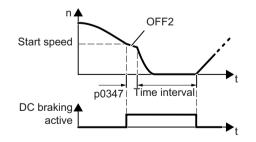
DC braking is not permissible in applications involving suspended loads, e.g. lifting equipment/ cranes and vertical conveyors.

## Function

#### NOTICE

#### Motor overheating as a result of DC braking

The motor will overheat if you use DC braking too frequently or use it for too long. This may damage the motor.


- Monitor the motor temperature.
- Allow the motor to adequately cool down between braking operations.
- If necessary, select another motor braking method.

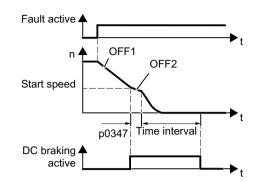
With DC braking, the converter outputs an internal OFF2 command for the time that it takes to de-energize the motor p0347 - and then impresses the braking current for the duration of the DC braking.

The DC-braking function is possible only for asynchronous motors.

4 different events initiate DC braking:

#### DC braking when falling below a starting speed




Requirement:

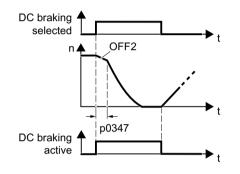
p1230 = 1 and p1231 = 14

Function:

- 1. The motor speed has fallen below the starting speed.
- 2. The converter activates the DC braking as soon as the motor speed falls below the starting speed.

### DC braking when a fault occurs




**Requirement:** 

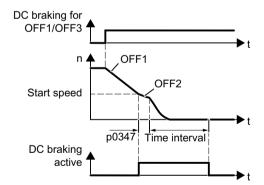
Fault number and fault response are assigned via p2100 and p2101.

Function:

- 1. A fault occurs, which initiates DC braking as response.
- 2. The motor brakes along the down ramp to the speed for the start of DC braking.
- 3. DC braking starts.

## DC braking initiated by a control command




Requirement:

p1231 = 4 and p1230 = control command, e.g. p1230 = 722.3 (control command via DI 3) Function:

- The higher-level control issues the command for DC braking, e.g. using DI3: p1230 = 722.3.
- 2. DC braking starts.

If the higher-level control withdraws the command during DC braking, the converter interrupts DC braking and the motor accelerates to its setpoint.

## DC braking when the motor is switched off



**Requirement:** 

p1231 = 5 or p1230 = 1 and p1231 = 14Function:

- 1. The higher-level control switches off the motor (OFF1 or OFF3).
- 2. The motor brakes along the down ramp to the speed for the start of DC braking.
- 3. DC braking starts.

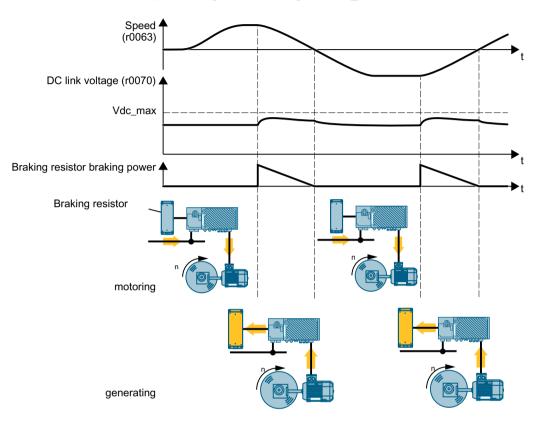
# Parameters

# Settings for DC braking

| Parameter  | Description                      | Setting                                                                                                                                           |
|------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| p0347[0n]  | Motor de-excitation time [s]     | Sets the de-magnetizing time (for asynchronous motors) after the converter pulses have been can-<br>celed (calculated after quick commissioning). |
|            |                                  | The converter can trip due to an overcurrent during DC braking if the de-excitation time is too short.                                            |
|            |                                  | Factory setting: 0                                                                                                                                |
| p1230[0n]  | BI: DC braking activation        | Sets the signal source to activate DC braking.                                                                                                    |
|            |                                  | 1 signal: DC braking activated.                                                                                                                   |
|            |                                  | 0 signal: DC braking deactivated.                                                                                                                 |
|            |                                  | Factory setting: 0                                                                                                                                |
| p1231[0n]  | Configuring DC braking           | Sets to activate DC braking.                                                                                                                      |
|            |                                  | 0: No DC braking (factory setting)                                                                                                                |
|            |                                  | 4: DC braking                                                                                                                                     |
|            |                                  | 5: DC braking for OFF1/OFF3                                                                                                                       |
|            |                                  | 14: DC braking below starting speed                                                                                                               |
| p1232[0n]  | DC braking, braking current [A]  | Sets the braking current for DC braking.                                                                                                          |
|            |                                  | Factory setting: 0                                                                                                                                |
| p1233[0n]  | DC braking duration [s]          | Sets the DC braking time (as fault response).                                                                                                     |
|            |                                  | Factory setting: 1                                                                                                                                |
| p1234[0n]  | Speed at the start of DC braking | Sets the starting speed for DC braking.                                                                                                           |
|            | [rpm]                            | Factory setting: 210000                                                                                                                           |
| r1239[813] | CO/BO: DC braking status word    | Status word of the DC braking.                                                                                                                    |
|            |                                  | .08: DC braking active                                                                                                                            |
|            |                                  | .10: DC braking ready                                                                                                                             |
|            |                                  | .11: DC braking selected                                                                                                                          |
|            |                                  | .12: DC braking selection internally locked                                                                                                       |
|            |                                  | .13: DC braking for OFF1/OFF3                                                                                                                     |

| Parameter      | Description                                | Setting                                                                                                                                                                                              |
|----------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p2100[0<br>19] | Changing the fault reaction, fault number  | Enter the fault number for which DC braking should<br>be activated, e.g. p2100[3] = 7860 (external fault<br>1).                                                                                      |
|                |                                            | Factory setting: 0                                                                                                                                                                                   |
| p2101[0<br>19] | Changing the fault reaction, reac-<br>tion | Assign the fault response: p2101[3] = 6 (internal armature short-circuit / DC braking).                                                                                                              |
|                |                                            | The fault is assigned as an index of p2100. Assign<br>the same index of p2100 or p2101 to the fault and<br>fault response.                                                                           |
|                |                                            | The converter's List Manual lists in the "Faults and<br>alarms" list the possible fault responses for every<br>fault. Entry "DCBRK" means that you may set DC<br>braking as response for this fault. |
|                |                                            | Factory setting: 0                                                                                                                                                                                   |

#### Configuring DC braking as a response to faults


# 6.19.2 Dynamic braking

Typical applications for dynamic braking require continuous braking and acceleration operations or frequent changes of the motor direction of rotation:

- Horizontal conveyors
- Vertical and inclined conveyors
- Hoisting gear

## **Principle of operation**

The DC link voltage increases as soon as the motor supplies regenerative power to the converter when braking. Depending on the DC link voltage, the converter outputs the regenerative power to the integrated or optional braking resistor. The braking resistor converts the regenerative power into heat, therefore preventing DC link voltages > Vdc\_max.



## Setting the dynamic braking

| Param-<br>eter | Description                                   | Setting                                                                                                                                                                                      |
|----------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p0219          | Braking power of the<br>braking resistor [kW] | For p0219 > 0, the converter deactivates the VDC_max controller.<br>For vector control, p0219 defines the regenerative power limit p1531.<br>$P_{max}$                                       |
|                |                                               | t<br>Using p0219, you define the maximum braking power that the<br>braking resistor must absorb.<br>For an excessively low braking power, the converter extends the<br>motor ramp-down time. |
|                |                                               | Factory setting: dependent upon the nominal power of the drive                                                                                                                               |
| p0212.<br>8    | Power unit configura-<br>tion                 | If necessary, reduce the activation threshold for the braking resistor.                                                                                                                      |
| p0210          | Unit supply voltage [V]                       | Sets the drive supply voltage.                                                                                                                                                               |
|                |                                               | Factory setting: 400                                                                                                                                                                         |

An application example for configuring a drive with braking resistor is provided in the Internet:

Engineering and commissioning series lifting equipment/cranes (<u>https://support.industry.siemens.com/cs/ww/en/view/103156155</u>)

# 6.20 Overcurrent protection

#### Overview



The U/f control prevents too high a motor current by influencing the output frequency and the motor voltage (I\_max controller).

## Requirement

You have selected U/f control.

The application must allow the motor torque to decrease at a lower speed.

## **Function description**

The I\_max controller influences the output frequency and the motor voltage.

If the motor current reaches the current limit during acceleration, the I\_max controller extends the acceleration operation.

If the motor load is so high during steady-state operation that the motor current reaches the current limit, then the I\_max controller reduces the speed and the motor voltage until the motor current returns to the permissible range again.

If the motor current reaches the current limit during deceleration, the I\_max controller extends the deceleration operation.

### Parameters

The factory setting for proportional gain and the integral time of the I\_max controller ensures faultless operation in the vast majority of cases.

The factory setting of the I\_max controller must only be changed in the following exceptional cases:

- Speed or torque of the motor tend to cause vibrations upon reaching the current limit.
- Parameter Description Setting r0056.0 ... 15 CO/BO: Status word, closed-loop Display and BICO output for the status word of the closed-loop control. control p0305[0...n] Rated motor current [A] Sets the rated motor current. Factory setting: 0 p0640[0...n] Current limit [A] Sets the current limit. p1340[0...n] I max frequency controller propor-Sets the proportional gain of the I max frequency tional gain controller. Factory setting: 0 I max frequency controller inte-Sets the integral time for the I max frequency conp1341[D] gral time [s] troller. Factory setting: 0.3 r1343 CO: I max controller frequency Displays the effective frequency limit. output [rpm]
- The converter goes into the fault state with an overcurrent message.

You will find more information about this function in function diagram 6300 and in the parameter list.

# 6.21 Converter protection using temperature monitoring

# Overview



The converter temperature is essentially defined by the following effects:

- The ambient temperature
- The ohmic losses increasing with the output current
- Switching losses increasing with the pulse frequency

#### **Monitoring types**

The converter monitors its temperature using the following monitoring types:

- I<sup>2</sup>t monitoring (alarm A07805, fault F30005)
- Measuring the chip temperature of the converter (alarm A05006, fault F30024)
- Measuring the heat sink temperature of the converter (alarm A05000, fault F30004)

### **Function description**

#### Overload response for p0290 = 0

The converter responds depending on the control mode that has been set:

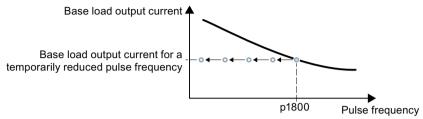
- In vector control, the converter reduces the output current.
- In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If the measure cannot prevent a converter thermal overload, then the converter switches off the motor with fault F30024.

#### Overload response for p0290 = 1

The converter immediately switches off the motor with fault F30024.


#### Overload response for p0290 = 2

We recommend this setting for drives with square-law torque characteristic, e.g. fans.

The converter responds in 2 stages:

1. If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800.

In spite of the temporarily reduced pulse frequency, the base-load output current remains unchanged at the value that is assigned to parameter p1800.



Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

- 2. If it is not possible to temporarily reduce the pulse frequency, or the risk of thermal overload cannot be prevented, then stage 2 follows:
  - In vector control, the converter reduces its output current.
  - In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

#### Overload response for p0290 = 3

If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

In spite of the temporarily reduced pulse frequency, the maximum output current remains unchanged at the value that is assigned to the pulse frequency setpoint. Also see p0290 = 2.

Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

#### Overload response for p0290 = 12

The converter responds in 2 stages:

- If you operate the converter with increased pulse frequency setpoint p1800, then the converter reduces its pulse frequency starting at p1800. There is no current derating as a result of the higher pulse frequency setpoint. Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.
- 2. If it is not possible to temporarily reduce the pulse frequency, or the risk of converter thermal overload cannot be prevented, then stage 2 follows:
  - In vector control, the converter reduces the output current.
  - In U/f control, the converter reduces the speed.

Once the overload condition has been removed, the converter re-enables the output current or speed.

If both measures cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

#### Overload response for p0290 = 13

We recommend this setting for drives with a high starting torque.

If you operate the converter with increased pulse frequency, then the converter reduces its pulse frequency starting at the pulse frequency setpoint p1800.

There is no current derating as a result of the higher pulse frequency setpoint.

Once the overload condition has been removed, the converter increases the pulse frequency back to the pulse frequency setpoint p1800.

If it is not possible to temporarily reduce the pulse frequency, or the measure cannot prevent a power unit thermal overload, then the converter switches off the motor with fault F30024.

| Parameter  | Description                                  | Setting                                                                                                                                 |
|------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| r0036      | CO: Power unit overload I <sup>2</sup> t [%] | Displays the power unit overload determined using the I <sup>2</sup> t calculation.                                                     |
|            |                                              | The I <sup>2</sup> t monitoring calculates the converter utiliza-<br>tion based on a current reference value defined in<br>the factory. |
|            |                                              | <ul> <li>Actual current &gt; reference value: r0036 be-<br/>comes higher.</li> </ul>                                                    |
|            |                                              | <ul> <li>Actual current &lt; reference value: r0036 be-<br/>comes lower or remains = 0.</li> </ul>                                      |
| r0037[019] | Power unit temperatures [°C]                 | Display and connector output for the temperature in the power unit.                                                                     |
| p0290      | Power unit overload response                 | Sets the response to a thermal overload condition of the power unit.                                                                    |
|            |                                              | The details are described above.                                                                                                        |
|            |                                              | Factory setting: 13                                                                                                                     |

## Parameters

6.22 Motor temperature monitoring using a temperature sensor

| Parameter | Description                                           | Setting                                                                                                                                     |
|-----------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| p0292[01] | threshold [°C]                                        | Sets the alarm threshold for power unit overtem-<br>perature. The value is set as a difference to the trip-<br>ping (shutdown) temperature. |
|           |                                                       | Factory setting:                                                                                                                            |
|           |                                                       | <ul><li>[0] Overtemperature heat sink: 5</li><li>[1] Temperature rise power semiconductor (chip):</li><li>15</li></ul>                      |
| p0294     | Power unit alarm for I <sup>2</sup> t overload<br>[%] | Sets the alarm threshold for the I <sup>2</sup> t power unit over-<br>load.                                                                 |
|           |                                                       | Factory setting: 95                                                                                                                         |

# 6.22

# Motor temperature monitoring using a temperature sensor

You can use one of the following sensors to protect the motor against overtemperature:

- Temperature switch (e. g. bi-metal switch)
- PTC sensor
- KTY 84 sensor
- Pt1000 sensor

Connect the motor's temperature sensor through the motor output cable on the converter. For more information about motor interface, see Interface description - X2 (Page 79).

## **KTY84** sensor

#### NOTICE

## Overheating of the motor due to KTY sensor connected with the incorrect polarity

If a KTY sensor is connected with incorrect polarity, the motor can become damaged due to overheating, as the converter cannot detect a motor overtemperature condition.

• Connect the KTY sensor with the correct polarity.

#### 6.22 Motor temperature monitoring using a temperature sensor



Using a KTY sensor, the converter monitors the motor temperature and the sensor itself for wirebreak or short-circuit:

 Temperature monitoring: The converter uses a KTY sensor to evaluate the motor temperature in the range from -48° C ... +248° C.

Use the p0604 or p0605 parameter to set the temperature for the alarm and fault threshold.

- Overtemperature alarm (A07910):
  - motor temperature > p0604 and p0610 = 0
- Overtemperature fault (F07011):
  - The converter responds with a fault in the following cases:
  - motor temperature > p0605
  - motor temperature > p0604 and p0610  $\neq$  0
- Sensor monitoring (A07015 or F07016):
  - Wire-break:

The converter interprets a resistance > 2120  $\Omega$  as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

- Short-circuit:

The converter interprets a resistance  $< 50 \Omega$  as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

## **Temperature switch**



The converter interprets a resistance  $\ge 100 \Omega$  as being an opened temperature switch and responds according to the setting for p0610.

## PTC sensor



The converter interprets a resistance > 1650  $\Omega$  as being an overtemperature and responds according to the setting for p0610.

The converter interprets a resistance < 20  $\Omega$  as being a short-circuit and responds with alarm A07015. If the alarm is present for longer than 100 milliseconds, the converter shuts down with fault F07016.

#### 6.22 Motor temperature monitoring using a temperature sensor

## Pt1000 sensor



Using a Pt1000 sensor, the converter monitors the motor temperature and the sensor itself for wire breakage and/or short-circuit:

 Temperature monitoring: Using a Pt1000 sensor, the converter evaluates the motor temperature in the range from -48 °C ... +248 °C.
 You set the temperature for the alarm and fault thresholds using parameters p0604 and

You set the temperature for the alarm and fault thresholds using parameters p0604 and p0605.

- Overtemperature alarm (A07910):
   motor temperature > p0604 and p0610 = 0
- Overtemperature fault (F07011): The converter responds with a fault in the following cases:
   - motor temperature > p0605
  - motor temperature > p0604 and p0610  $\neq$  0
- Sensor monitoring (A07015 or F07016):
  - Wire-break:

The converter interprets a resistance > 2120  $\Omega$  as a wire-break and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

- Short-circuit:

The converter interprets a resistance < 603  $\Omega$  as a short-circuit and outputs the alarm A07015. After 100 milliseconds, the converter changes to the fault state with F07016.

## Setting parameters for the temperature monitoring

| Parameter | Description                                                       | Setting                                                                                                                                                           |
|-----------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p0335[0n] | Motor-cooling method                                              | Sets the motor cooling system used.                                                                                                                               |
|           |                                                                   | 0: Natural cooling - with fan on the motor shaft<br>(factory setting)<br>1: Forced ventilation - with a separately driven fan<br>2: Liquid cooling<br>128: No fan |
| p0601[0n] | Motor temperature sensor type                                     | Sets the sensor type for the motor temperature monitoring.                                                                                                        |
|           |                                                                   | 0: No sensor (factory setting)<br>1: PTC<br>2: KTY84<br>4: Temperature switch<br>6: Pt1000                                                                        |
| p0604[0n] | Mot_temp_mod 2/KTY alarm<br>threshold [°C]                        | Sets the alarm threshold for monitoring the motor<br>temperature of motor temperature model 2 or KTY/<br>Pt1000.                                                  |
|           |                                                                   | Factory setting: 130                                                                                                                                              |
| p0605[0n] | Mot_temp_mod 1/2/sensor thresh-<br>old and temperature value [°C] | Sets the threshold and temperature value to moni-<br>tor the motor temperature.                                                                                   |
|           |                                                                   | Factory setting: 145                                                                                                                                              |

#### 6.23 Motor protection by calculating the temperature

| Parameter | Description                    | Setting                                                                                                                                                                                                                                                                                                              |
|-----------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p0610[0n] | Motor overtemperature response | Sets the system response when the motor temper-<br>ature reaches the alarm threshold.                                                                                                                                                                                                                                |
|           |                                | 0: A07012, not reducing the current limit.                                                                                                                                                                                                                                                                           |
|           |                                | 1: A07012 and F07011, reducing the current limit.                                                                                                                                                                                                                                                                    |
|           |                                | 2: A07012 and F07011, not reducing the current limit.                                                                                                                                                                                                                                                                |
|           |                                | 12: A07012 and F07011, not reducing the current limit. (factory setting)                                                                                                                                                                                                                                             |
|           |                                | Note: After setting p0610 = 12 and switching off<br>the supply voltage, the converter saves the most<br>recently calculated difference to the ambient air<br>temperature. After switching the supply voltage on<br>again, the thermal motor model starts with 90% of<br>the previously saved difference temperature. |
| p0640[0n] | Current limit [A]              | Sets the current limit.                                                                                                                                                                                                                                                                                              |
|           |                                | Factory setting: 0                                                                                                                                                                                                                                                                                                   |

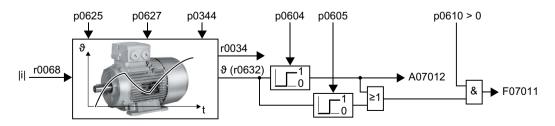
Additional information on the motor temperature monitoring can be found in function diagram 8016 of the List Manual.

# 6.23 Motor protection by calculating the temperature

#### Overview

4

The converter calculates the motor temperature based on a thermal motor model.


The thermal motor model responds far faster to temperature increases than a temperature sensor.

If the thermal motor model is used together with a temperature sensor, e.g. a Pt1000, then the converter corrects the model according to the measured temperature.

## **Function description**

#### Thermal motor model 2 for asynchronous motors

The thermal motor model 2 for asynchronous motors is a thermal 3-mass model, consisting of stator core, stator winding and rotor. Thermal motor model 2 calculates the temperatures - both in the rotor as well as in the stator winding.



#### 6.23 Motor protection by calculating the temperature

#### Note

#### No thermal motor model for permanent magnet synchronous motor

Protect the permanent magnet synchronous motor against overtemperature by evaluating a temperature sensor of the motor in the converter.

### Parameters

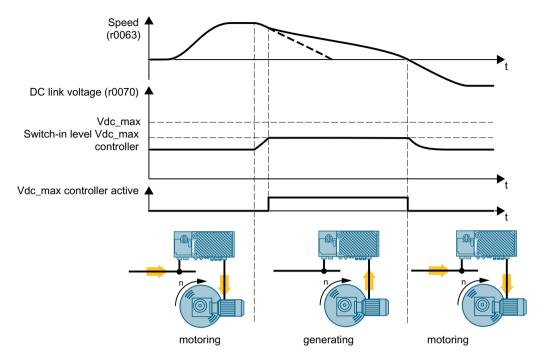
| Parameter | Description                                                  | Setting                                                                                                                   |                                                                                                                                                           |  |  |
|-----------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| r0034     | CO: Thermal motor load [%]                                   | Display and connector output for the motor utiliza-<br>tion from motor temperature model 1 (I <sup>2</sup> t).            |                                                                                                                                                           |  |  |
| r0068[01] | CO: Absolute actual current value                            | e Displays actual absolute current.                                                                                       |                                                                                                                                                           |  |  |
|           | [A]                                                          | [0] Unsmoothed                                                                                                            |                                                                                                                                                           |  |  |
|           |                                                              | [1] Smoothed with p004                                                                                                    | 5                                                                                                                                                         |  |  |
| p0344[0n] | Motor weight (for thermal motor                              | Sets the motor weight.                                                                                                    | After selecting an asyn-                                                                                                                                  |  |  |
|           | model) [kg]                                                  | Factory setting: 0 kg                                                                                                     | chronous motor<br>(p0300) or a listed asyn-                                                                                                               |  |  |
| p0604[0n] | Mot_temp_mod 2/KTY alarm<br>threshold [°C]                   | Sets the alarm threshold<br>for monitoring the mo-<br>tor temperature of mo-<br>tor temperature model<br>2 or KTY/Pt1000. | (p0300) of a listed asyn-<br>chronous motor<br>(p0301) during the com-<br>missioning, the convert-<br>er sets the parameters<br>to values appropriate for |  |  |
|           |                                                              | Factory setting: 130                                                                                                      | the motor.                                                                                                                                                |  |  |
| p0605[0n] | Mot_temp_mod 1/2/sensor threshold and temperature value [°C] | Sets the threshold and<br>temperature value to<br>monitor the motor tem-<br>perature.                                     | The parameters are write-protected for listed motors ( $p0301 \ge 0$ ).                                                                                   |  |  |
|           |                                                              | Factory setting: 145                                                                                                      |                                                                                                                                                           |  |  |
| p0612[0n] | Motor temperature model activa-<br>tion                      | Activates the motor tem-<br>perature model.<br>.01                                                                        |                                                                                                                                                           |  |  |
|           |                                                              | 1 signal: Activate motor<br>temperature model 2<br>for asynchronous mo-<br>tors<br>.09                                    |                                                                                                                                                           |  |  |
|           |                                                              | 1 signal: Activate motor<br>temperature model 2 ex-<br>pansions                                                           |                                                                                                                                                           |  |  |
| p0627[0n] | Motor overtemperature, stator<br>winding [K]                 | Defines the rated over-<br>temperature of the sta-<br>tor winding referred to<br>the ambient tempera-<br>ture.            |                                                                                                                                                           |  |  |
|           |                                                              | Factory setting: 80                                                                                                       |                                                                                                                                                           |  |  |

| 6.24 Motor and  | d converter | protection | hv I | limitina | the voltage |
|-----------------|-------------|------------|------|----------|-------------|
| 0.24 100001 011 |             | protection | Dy i | mmung    | the voltage |

| Parameter | Description                                              | Setting                                                                                                                                                                                                                                                                                                               |  |
|-----------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| p0610[0n] | Motor overtemperature response                           | Sets the system response when the motor temper-<br>ature reaches the alarm threshold.                                                                                                                                                                                                                                 |  |
|           |                                                          | 0: A07012, not reducing the current limit.                                                                                                                                                                                                                                                                            |  |
|           |                                                          | 1: A07012 and F07011, reducing the current limit.                                                                                                                                                                                                                                                                     |  |
|           |                                                          | 2: A07012 and F07011, not reducing the current limit.                                                                                                                                                                                                                                                                 |  |
|           |                                                          | 12: A07012 and F07011, not reducing the current limit. (factory setting)                                                                                                                                                                                                                                              |  |
|           |                                                          | Note: After setting p0610 = 12 and switching off<br>the supply voltage, the converter saves the most<br>recently calculated difference to the ambient air<br>temperature. After switching the supply voltage on<br>again, the thermal motor model starts with 90 % of<br>the previously saved difference temperature. |  |
| p0625[0n] | Motor ambient temperature dur-<br>ing commissioning [°C] | Defines the ambient temperature of the motor for calculating the motor temperature model.                                                                                                                                                                                                                             |  |
|           |                                                          | Factory setting: 20                                                                                                                                                                                                                                                                                                   |  |
| r0632[0n] | Mot_temp_mod stator winding<br>temperature [°C]          | Displays the stator winding temperature of the mo-<br>tor temperature model.                                                                                                                                                                                                                                          |  |
| p0640[0n] | Current limit [A]                                        | Sets the current limit.                                                                                                                                                                                                                                                                                               |  |
|           |                                                          | Factory setting: 0                                                                                                                                                                                                                                                                                                    |  |

# 6.24 Motor and converter protection by limiting the voltage

#### What causes an excessively high voltage?




To drive the load, an electric motor converts electrical energy into mechanical energy. If the motor is driven by its load, e.g. due to the load moment of inertia when braking, then the energy flow reverses: The motor temporarily operates as generator, and converts mechanical energy into electrical energy. The electrical energy flows from the motor to the converter. If the converter cannot output the electrical energy supplied by the motor, e.g. to a braking resistor, then the converter stores the energy in its DC link capacitance. As a consequence, the DC link voltage Vdc in the converter is higher.

An excessively high DC link voltage damages the converter and also the motor. As a consequence, the converter monitors its DC link voltage - and when necessary switches off the motor and outputs fault "DC link overvoltage".

6.24 Motor and converter protection by limiting the voltage

## Protecting the motor and converter against overvoltage



The Vdc\_max control extends the motor ramp-down time when braking. The motor then only feeds so much energy into the converter to cover the losses in the converter. The DC link voltage remains in the permissible range.

The Vdc\_max control is not suitable for applications where the motor is in continuous regenerative operation, e.g. as is the case for cranes and centrifuges.

Electrically braking the motor (Page 305)

## Parameters for Vdc\_max control

The parameters differ depending on the motor control mode.

| Parameter for<br>U/f control | Parameter for vector control | Description                             | Setting                                                             |
|------------------------------|------------------------------|-----------------------------------------|---------------------------------------------------------------------|
| p1280 = 1                    | p1240 = 1                    | VDC controller configu-<br>ration       | 0: VDC controller is disabled (factory set-<br>ting)                |
|                              |                              |                                         | 1: VDC controller is enabled                                        |
| r1282                        | r1242                        | Vdc_max control switch-<br>on level [V] | DC-link voltage value above which the Vdc_max control is activated. |
| p1283                        | p1243                        | Vdc_max control dy-<br>namic factor [%] | Scaling closed-loop control parameters p1290, p1291 and p1292.      |
|                              |                              |                                         | Factory setting: 100                                                |

6.25 Monitoring the driven load

| Parameter for<br>U/f control | Parameter for vector control | Description                                     | Setting                                                                                                                                                                                         |
|------------------------------|------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p1294                        | p1254                        | Vdc_max control auto-<br>matic ON level sensing | 0: Automatic detection disabled<br>1: Automatic detection enabled<br>Factory setting: dependent upon the<br>converter                                                                           |
| p0210                        | p0210                        | Unit supply voltage [V]                         | If p1254 or p1294 = 0, the converter<br>uses this parameter to calculate the<br>switch-in thresholds of the Vdc_max<br>control. Set this parameter to the actual<br>value of the input voltage. |

For more information about this function, see the List Manual (function diagrams 6320 and 6220).

Overview of the manuals (Page 592)

# 6.25 Monitoring the driven load



In many applications, the speed and the torque of the motor can be used to determine whether the driven load is in an impermissible operating state. The use of an appropriate monitoring function in the converter prevents failures and damage to the machine or plant.

Examples:

- For fans or conveyor belts, an excessively low torque can mean a broken drive belt.
- For pumps, insufficient torque can indicate a leakage or dry-running.
- For extruders and mixers, an excessive torque together with low speed can indicate machine blockage.

# 6.25.1 No-load monitoring



An insufficient motor current indicates that the motor cable is disconnected.

If the motor current for the time p2180 lies below the current level p2179, the converter signals the alarm A07929.

| Parameter | Description                         | Setting                                                |
|-----------|-------------------------------------|--------------------------------------------------------|
| r0068[01] | CO: Absolute actual current value   | Displays actual absolute current.                      |
|           | [A]                                 | [0] Unsmoothed                                         |
|           |                                     | [1] Smoothed with p0045                                |
| p2179[0n] | Output load detection current limit | Sets the current limit for output load identification. |
|           | [A]                                 | Factory setting: 0                                     |

6.25 Monitoring the driven load

| Parameter | Description                               | Setting                                                                         |
|-----------|-------------------------------------------|---------------------------------------------------------------------------------|
| p2180[0n] | Output load detection delay time<br>[ms]  | Sets the delay time for the message "output load not available" (r2197.11 = 1). |
|           |                                           | Factory setting: 2000                                                           |
| r2197.11  | CO/BO: Status word monitoring functions 1 | Display and BICO output for the first status word of the monitoring functions.  |
|           |                                           | Bit 11: Output load not available                                               |


# 6.25.2 Rotation monitoring



The converter monitors the speed or velocity of a machine component via an electromechanical or electronic encoder, e.g. a proximity switch. Examples of how the function can be used:

- · Gearbox monitoring for traction drives and hoisting gear
- Drive belt monitoring for fans and conveyor belts
- Blocking protection for pumps and conveyor belts

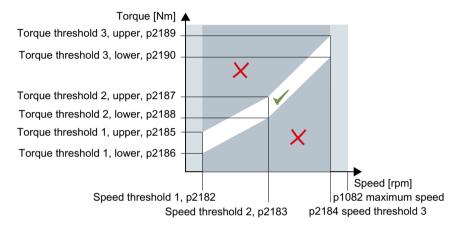
The converter checks whether the encoder consistently supplies a 24 V signal during motor operation. If the encoder signal fails for time p2192, the converter signals fault F07936.



## Parameters

| Parameter | Description                         | Setting                                                   |
|-----------|-------------------------------------|-----------------------------------------------------------|
| r0722.025 | CO/BO: CU digital inputs status     | Displays the status of the digital inputs.                |
| p2192[0n] | Load monitoring delay time [s]      | Sets the delay time to evaluate the load monitoring.      |
|           |                                     | Factory setting: 10                                       |
| p2193[0n] | Load monitoring configuration       | Sets the load monitoring configuration:                   |
|           |                                     | 0: Monitoring switched off                                |
|           |                                     | 1: Monitoring torque and load drop (factory set-<br>ting) |
|           |                                     | 2: Monitoring speed and load drop                         |
|           |                                     | 3: Load failure monitoring                                |
| p3232[0n] | Bl: Load monitoring, failure detec- | Sets the signal source for detecting a failure.           |
|           | tion                                | Factory setting: 1                                        |

For more information, see the List Manual (the parameter list and function diagram 8013).


# 6.25.3 Torque monitoring

# **Function description**



In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.

The converter monitors the torque based on the envelope curve depending on the speed against a lower and upper torque.



If the torque lies in the impermissible range longer than time p2192, the converter reacts as specified in p2181.

The monitoring is not active below speed threshold 1 and above speed threshold 3.

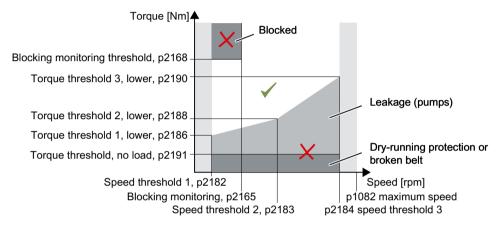
### Setting monitoring

- 1. Operate the drive at three different speeds in succession.
- 2. Set the speed thresholds p2182 ... p2184 to the respective values.
- 3. Set the torque thresholds for each speed. The converter displays the current torque in r0031.
- 4. Set p2193 = 1.

You have now set monitoring.  $\hfill\square$ 

6.25 Monitoring the driven load

| Parameters | Description                                       | Setting                                                                                                                                          |                              |
|------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| r0031      | Torque actual value, smoothed<br>[Nm]             | Displays the smoothed to                                                                                                                         | orque actual value.          |
| p2181[0n]  | Load monitoring response                          | Sets the response when toring.                                                                                                                   | evaluating the load moni-    |
|            |                                                   | 0: Load monitoring disab                                                                                                                         | oled (factory setting)       |
|            |                                                   | 1: A07920 for torque too low                                                                                                                     |                              |
|            |                                                   | 2: A07921 for torque too                                                                                                                         | high                         |
|            |                                                   | 3: A07922 for torque out                                                                                                                         | tside tolerance              |
|            |                                                   | 4: F07923 for torque too                                                                                                                         | low                          |
|            |                                                   | 5: F07924 for torque too                                                                                                                         | high                         |
|            |                                                   | 6: F07925 for torque out                                                                                                                         | side tolerance               |
| p2182[0n]  | Load monitoring speed threshold 1<br>[rpm]        | Sets the speed/torque<br>envelope curve for load                                                                                                 | Factory setting: 150         |
| p2183[0n]  | Load monitoring speed threshold 2<br>[rpm]        | monitoring.                                                                                                                                      | Factory setting: 900         |
| p2184[0n]  | Load monitoring speed threshold 3<br>[rpm]        |                                                                                                                                                  | Factory setting: 1500        |
| p2185[0n]  | Load monitoring torque threshold<br>1, upper [Nm] |                                                                                                                                                  | Factory setting:<br>10000000 |
| p2186[0n]  | Load monitoring torque threshold<br>1, lower [Nm] |                                                                                                                                                  | Factory setting: 0           |
| p2187[0n]  | Load monitoring torque threshold 2, upper [Nm]    |                                                                                                                                                  | Factory setting:<br>10000000 |
| p2188[0n]  | Load monitoring torque threshold 2, lower [Nm]    |                                                                                                                                                  | Factory setting: 0           |
| p2189[0n]  | Load monitoring torque threshold 3, upper [Nm]    |                                                                                                                                                  | Factory setting:<br>10000000 |
| p2190[0n]  | Load monitoring torque threshold 3, lower [Nm]    |                                                                                                                                                  | Factory setting: 0           |
| p2191[0n]  | Load monitoring torque threshold,<br>no load [Nm] | <ul> <li>Sets the torque threshold to identify dry running operation for pumps or belt breakage for fans.</li> <li>Factory setting: 0</li> </ul> |                              |
| p2192[0n]  | Load monitoring delay time [s]                    |                                                                                                                                                  | luate the load monitoring.   |
| F= . 2=[0] |                                                   | Factory setting: 10                                                                                                                              |                              |
| p2193[0n]  | Load monitoring configuration                     | Sets the load monitoring                                                                                                                         | configuration:               |
|            |                                                   | 0: Monitoring switched o                                                                                                                         | •                            |
|            |                                                   | 1: Monitoring torque and<br>ting)                                                                                                                |                              |
|            |                                                   | 2: Monitoring speed and                                                                                                                          | load drop                    |
|            |                                                   | 3: Load failure monitorin                                                                                                                        |                              |


# 6.25.4 Blocking protection, leakage protection and dry-running protection

# Overview



In applications with fans, pumps or compressors with the flow characteristic, the torque follows the speed according to a specific characteristic. An insufficient torque for fans indicates that the power transmission from the motor to the load is interrupted. For pumps, insufficient torque can indicate a leakage or dry-running.

# **Function description**



If the torque and speed lie in the impermissible range longer than time p2192, the converter reacts as specified in p2181.

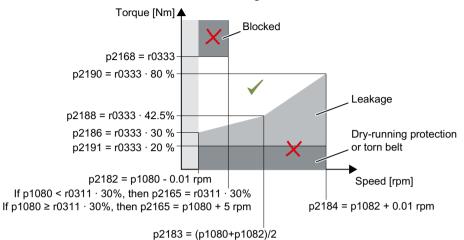
For applications with pumps, the converter detects the following states of the driven load:

- Blocked
- Leakage
- Dry running

For applications with fans or compressors, the converter detects the following states of the driven load:

- Blocked
- Torn belt

The monitoring is not active below speed threshold 1 and above speed threshold 3.


When using the control mode "U/f control" (p1300 < 10), the "Blocking protection" function becomes active when the current limit is reached.

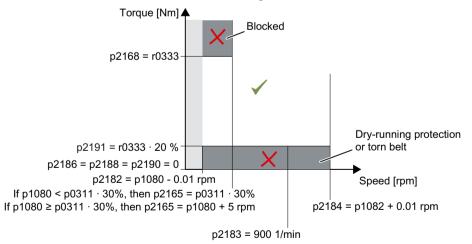


6.25 Monitoring the driven load

#### Setting pump monitoring

- 1. Set p2193 = 4.
- 2. The converter sets the monitoring as shown.




- 3. The converter sets monitoring response p2181 = 7
- 4. If necessary, adjust the speed thresholds p2182 ... p2184.
- 5. If necessary, adjust the torque threshold for each speed. The converter displays the current torque in r0031.

You have now set monitoring.

#### 

#### Setting fan and compressor monitoring

- 1. Set p2193 = 5.
- 2. The converter sets the monitoring as shown.



- 3. The converter sets monitoring response p2181 = 7
- 4. If necessary, adjust the speed thresholds p2182 ... p2184.
- 5. Set the torque threshold for each speed. The converter displays the current torque in r0031.

6.25 Monitoring the driven load

You have now set monitoring.  $\hfill\square$ 

| Parameters | Description                                                     | Setting                                                                         |
|------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|
| r0031      | Torque actual value, smoothed<br>[Nm]                           | Displays the smoothed torque actual value.                                      |
| p0311[0n]  | Rated motor speed [rpm]                                         | Sets the rated motor speed.                                                     |
|            |                                                                 | Factory setting: 0                                                              |
| r0333[0n]  | Rated motor torque [Nm]                                         | Displays the rated motor torque.                                                |
| p1080[0n]  | Minimum speed [rpm]                                             | Sets the lowest possible motor speed.                                           |
|            |                                                                 | Factory setting: 0                                                              |
| p1082[0n]  | Maximum speed [rpm]                                             | Sets the highest possible speed.                                                |
|            |                                                                 | Factory setting: 1500                                                           |
| p1300[0n]  | Open-loop/closed-loop control op-                               | Sets the open and closed-loop control mode.                                     |
|            | erating mode                                                    | 0: U/f control with linear characteristic (factory set-<br>ting)                |
|            |                                                                 | 1: U/f control with linear characteristic and FCC                               |
|            |                                                                 | 2: U/f control with parabolic characteristic                                    |
|            |                                                                 | 3: U/f control with parameterizable characteristic                              |
|            |                                                                 | 4: U/f control with linear characteristic and ECO                               |
|            |                                                                 | 5: U/f control for drives requiring a precise frequen-<br>cy (e.g. textiles)    |
|            |                                                                 | 6: U/f control for drives requiring a precise frequen-<br>cy and FCC            |
|            |                                                                 | 7: U/f control for a parabolic characteristic and ECO                           |
|            |                                                                 | 19: U/f control with independent voltage setpoint                               |
|            |                                                                 | 20: Speed control (encoderless)                                                 |
|            |                                                                 | 22: Torque control (encoderless)                                                |
| p2165[0n]  | Load monitoring blocking monitor-<br>ing threshold, upper [rpm] | Sets the upper speed threshold of the stall moni-<br>toring of the pump or fan. |
|            |                                                                 | Factory setting: 0                                                              |
| p2168[0n]  | Load monitoring blocking monitor-<br>ing torque threshold [Nm]  | Sets the torque threshold of the stall monitoring of the pump or fan.           |
|            |                                                                 | Factory setting: 10000000                                                       |
| p2181[0n]  | Load monitoring response                                        | Sets the response when evaluating the load moni-<br>toring.                     |
|            |                                                                 | 0: Load monitoring disabled (factory setting)                                   |
|            |                                                                 | 7: Pump/fan load monitoring as alarm (A07891,<br>A07892, A07893)                |
|            |                                                                 | 8: Pump/fan load monitoring as fault (F07894,<br>F07895, F07896)                |

#### 6.26 Efficiency optimization

| Parameters | Description                                       | Setting                                                                     |                                                                                                                                                              |
|------------|---------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p2182[0n]  | Load monitoring speed threshold 1<br>[rpm]        | Sets the speed/torque<br>envelope curve for load<br>monitoring.             | • When using the con-<br>trol mode "U/f con-<br>trol" (p1300 < 10):<br>p2182 > 10% of the<br>rated speed                                                     |
|            |                                                   |                                                                             | <ul> <li>When using the control mode "encoder-less vector control"<br/>(p1300 = 20):<br/>p2182 &gt; p1755<br/>(switchover speed,<br/>motor model)</li> </ul> |
|            |                                                   | -                                                                           | Factory setting: 150                                                                                                                                         |
| p2183[0n]  | Load monitoring speed threshold 2<br>[rpm]        |                                                                             | Factory setting: 900                                                                                                                                         |
| p2184[0n]  | Load monitoring speed threshold 3<br>[rpm]        |                                                                             | Factory setting: 1500                                                                                                                                        |
| p2186[0n]  | Load monitoring torque threshold<br>1, lower [Nm] |                                                                             | Factory setting: 0                                                                                                                                           |
| p2188[0n]  | Load monitoring torque threshold<br>2, lower [Nm] |                                                                             | Factory setting: 0                                                                                                                                           |
| p2190[0n]  | Load monitoring torque threshold<br>3, lower [Nm] |                                                                             | Factory setting: 0                                                                                                                                           |
| p2191[0n]  | Load monitoring torque threshold,<br>no load [Nm] | Sets the torque threshold<br>operation for pumps or b<br>Factory setting: 0 |                                                                                                                                                              |
| p2192[0n]  | Load monitoring delay time [s]                    | Sets the delay time to eva                                                  | luate the load monitoring.                                                                                                                                   |
|            |                                                   | Factory setting: 10                                                         |                                                                                                                                                              |
| p2193[0n]  | Load monitoring configuration                     | Sets the load monitoring                                                    | configuration:                                                                                                                                               |
|            |                                                   | 1: Monitoring torque and ting)                                              | l load drop (factory set-                                                                                                                                    |
|            |                                                   | 4: Monitoring pump and                                                      | load failure                                                                                                                                                 |
|            |                                                   | 5: Monitoring fan and loa                                                   | ad failure                                                                                                                                                   |

# **Further information**

If you deselect monitoring with p2193 < 4, the converter then resets the load monitoring parameters to factory settings.

# 6.26 Efficiency optimization

# Overview



The efficiency optimization reduces the motor losses as far as possible.

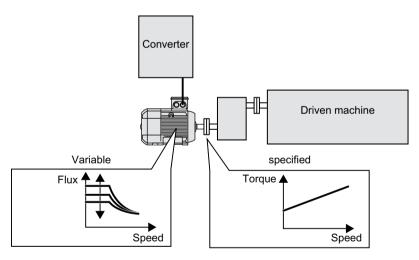
6.26 Efficiency optimization

Active efficiency optimization has the following advantages:

- Lower energy costs
- Lower motor temperature rise
- Lower motor noise levels

Active efficiency optimization has the following disadvantage:

• Longer acceleration times and more significant speed dips during torque surges.


The disadvantage is only relevant when the motor must satisfy high requirements relating to the dynamic performance. Even when efficiency optimization is active, the converter closed-loop motor control prevents the motor from stalling.

# Precondition

Efficiency optimization functions under the following preconditions:

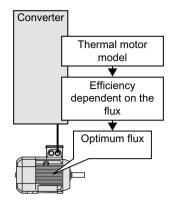
- Operation with an asynchronous motor
- Vector control is set in the converter.

# **Function description**



The three variables that the converter can directly set, which define efficiency of an asynchronous motor, are speed, torque and flux.

However, in all applications, speed and torque are specified by the driven machine. As a consequence, the remaining variable for the efficiency optimization is the flux.


The converter has two different methods of optimizing the efficiency.

#### Efficiency optimization, method 2

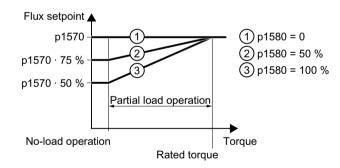
Generally, energy efficiency optimization method 2 achieves a better efficiency than method 1.

We recommend that you set method 2.

#### 6.26 Efficiency optimization

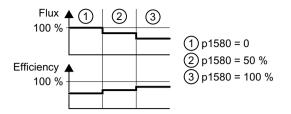


Based on its thermal motor model, the converter continually determines - for the actual operating point of the motor - the interdependency between efficiency and flux. The converter then sets the flux to achieve the optimum efficiency.




1 Efficiency optimization is not active

2 Efficiency optimization is active


Depending on the motor operating point, the converter either decreases or increases the flux in partial load operation of the motor.

#### Efficiency optimization, method 1



The motor operates in partial load mode between no-load operation and the rated motor torque. Depending on p1580, in the partial load range, the converter reduces the flux setpoint linearly with the torque.

6.27 Calculating the energy saving for fluid flow machines



The reduced flux in the motor partial load range results in higher efficiency.

#### Parameters

The converter calculates the parameters for the thermal motor model based on the motor data that has been set – and the motor data identification.

Efficiency optimization, method 2

| Parameter | Description                                                 | Setting                                                            |
|-----------|-------------------------------------------------------------|--------------------------------------------------------------------|
| p1401.14  | Flux control configuration                                  | 1 signal: Efficiency optimization 2 active                         |
|           |                                                             | Factory setting: 0000 0000 0000 0110 bin                           |
| p1570[0n] | CO: Flux setpoint [%]                                       | Sets the flux setpoint referred to rated motor flux.               |
|           |                                                             | Factory setting: 100                                               |
| p3315[0n] | Efficiency optimization 2 minimum flux limit value [%]      | Sets the minimal limit value for the calculated op-<br>timum flux. |
|           |                                                             | Factory setting: 50                                                |
| p3316[0n] | Efficiency optimization 2 maxi-<br>mum flux limit value [%] | Sets the maximum limit value for the calculated optimum flux.      |
|           |                                                             | Factory setting: 110                                               |

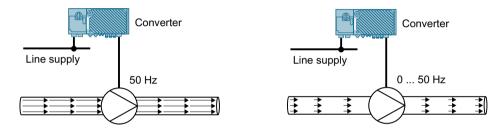
#### Efficiency optimization, method 1

| Parameter | Description                 | Setting                                                                                              |
|-----------|-----------------------------|------------------------------------------------------------------------------------------------------|
| p1570[0n] | CO: Flux setpoint [%]       | Sets the flux setpoint referred to rated motor flux.                                                 |
|           |                             | Factory setting: 100                                                                                 |
| p1580[0n] | Efficiency optimization [%] | 0 %: Efficiency optimization is deactivated.                                                         |
|           |                             | 100 %: In no-load operation, the converter reduces the flux setpoint to 50% of the rated motor flux. |
|           |                             | The factory setting depends on the converter.                                                        |

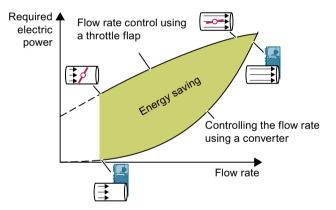
# 6.27 Calculating the energy saving for fluid flow machines

#### Overview




Fluid flow machines, which mechanically control the flow rate using valves or throttle flaps, operate with a constant speed corresponding to the line frequency.

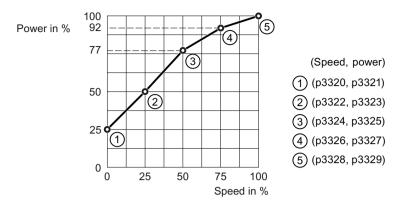
#### 6.27 Calculating the energy saving for fluid flow machines




The lower the flow rate, the poorer the efficiency of the fluid flow machine (pump). The fluid flow machine (pump) has the poorest efficiency when the throttle or valve is completely closed. Further, undesirable effects can occur, for example the formation of vapor bubbles in liquids (cavitation) or the temperature of the medium being pumped can increase.

The converter controls the flow rate by appropriately varying the speed of the fluid flow machine. By controlling the flow rate, the fluid flow machine operates at the optimum efficiency for each flow rate. This situation means that in the partial load range less electric power is required than when controlling the flow rate using valves and throttles.




# **Function description**



The converter calculates the energy saving from the flow characteristic associated with a mechanical flow control and the measured electric power that is drawn.

The calculation is suitable for centrifugal pumps, fans, radial and axial compressors, for instance.

#### 6.27 Calculating the energy saving for fluid flow machines



# Flow characteristic

To set the characteristic, you require the following data from the machine manufacturer for each speed interpolation point:

- The flow rate of the fluid-flow machine associated with the 5 selected converter speeds
- At constant speed, the power drawn which is associated with the 5 flow rates corresponds to the line frequency and mechanical throttling of the flow rate.

| Parameter | Description                                 | Setting                                                                                                                                                   |
|-----------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| r0039[02] | CO: Energy display [kWh]                    | [0] Energy consumption since the last reset.                                                                                                              |
|           |                                             | [1] Energy drawn since the last reset.                                                                                                                    |
|           |                                             | [2] Energy fed back since the last reset.                                                                                                                 |
|           |                                             | r0039 serves as reference signal of r0042.                                                                                                                |
| p0040     | Reset energy consumption display            | Setting p0040 = 1 to reset the display in r0039 and r0041.                                                                                                |
|           |                                             | Factory setting: 0                                                                                                                                        |
| r0041     | Energy saved [kWh]                          | Displays the saved energy referred to 100 operat-<br>ing hours. For an operating time of below 100<br>hours, the display is interpolated up to 100 hours. |
| r0042[02] | CO: Process energy display [Wh]             | [0] Energy consumption since the last reset.                                                                                                              |
|           |                                             | [1] Energy drawn since the last reset.                                                                                                                    |
|           |                                             | [2] Energy fed back since the last reset.                                                                                                                 |
|           |                                             | For display as process variable. Enable with p0043.                                                                                                       |
| p0043     | BI: Energy consumption display en-<br>abled | Sets the signal source (BI: p0043 = 1 signal) to en-<br>able/reset the process energy display in r0042.                                                   |
|           |                                             | Factory setting: 0                                                                                                                                        |
| p3320[0n] | Fluid flow machine power, point 1           | Specifies the power (P) of point 1 as a [%].                                                                                                              |
|           | [%]                                         | Factory setting: 25                                                                                                                                       |
| p3321[0n] | Fluid flow machine speed, point 1           | Specifies the speed (n) of point 1 as a [%].                                                                                                              |
|           | [%]                                         | Factory setting: 0                                                                                                                                        |
| p3322[0n] | Fluid flow machine power, point 2           | Specifies the power (P) of point 2 as a [%].                                                                                                              |
|           | [%]                                         | Factory setting: 50                                                                                                                                       |

6.28 Switchover between different settings

| Parameter | Description                              | Setting                                      |
|-----------|------------------------------------------|----------------------------------------------|
| p3323[0n] | Fluid flow machine speed, point 2<br>[%] | Specifies the speed (n) of point 2 as a [%]. |
|           |                                          | Factory setting: 25                          |
| p3324[0n] | Fluid flow machine power, point 3        | Specifies the power (P) of point 3 as a [%]. |
|           | [%]                                      | Factory setting: 77                          |
| p3325[0n] | Fluid flow machine speed, point 3<br>[%] | Specifies the speed (n) of point 3 as a [%]. |
|           |                                          | Factory setting: 50                          |
| p3326[0n] | Fluid flow machine power, point 4<br>[%] | Specifies the power (P) of point 4 as a [%]. |
|           |                                          | Factory setting: 92                          |
| p3327[0n] | Fluid flow machine speed, point 4<br>[%] | Specifies the speed (n) of point 4 as a [%]. |
|           |                                          | Factory setting: 75                          |
| p3328[0n] | Fluid flow machine power, point 5<br>[%] | Specifies the power (P) of point 5 as a [%]. |
|           |                                          | Factory setting: 100                         |
| p3329[0n] | Fluid flow machine speed, point 5<br>[%] | Specifies the speed (n) of point 5 as a [%]. |
|           |                                          | Factory setting: 100                         |

# 6.28 Switchover between different settings

### Overview

There are applications that require different converter settings.

### Example:

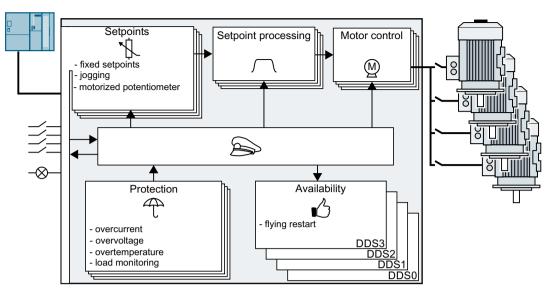
Different motors are operated on one converter. The converter must operate with the motor data of the particular motor and the appropriate ramp-function generator.

### **Function description**

### Drive data sets (DDS)

Some converter functions can be set differently, and there can be a switch between the different settings.

#### Note


You can only switch over the motor data of the drive data sets in the "ready for operation" state with the motor switched off. The switchover time is approx. 50 ms.

If you do not switch over the motor data together with the drive data sets (i.e. same motor number in p0826), then the drive data sets can also be switched over in operation.

The associated parameters are indexed (index 0, 1, 2, or 3). One of the four indexes is selected with control commands, and thereby one of the four saved settings.

The settings in the converter with the same index are called the drive data set.

6.28 Switchover between different settings



# Selecting the number of drive data sets

Parameter p0180 defines the number of drive data sets (1 ... 4).

| Parameter  | Description                    |
|------------|--------------------------------|
| p0010 = 0  | Drive commissioning: Ready     |
| p0010 = 15 | Drive commissioning: Data sets |
| p0180      | Drive data set (DDS) number    |

#### Copying the drive data sets

| Parameter    | Description               |
|--------------|---------------------------|
| p0819[0]     | Source drive data set     |
| p0819[1]     | Target drive data set     |
| p0819[2] = 1 | Starts the copy operation |

| Parameter | Description                         | Setting                                           |
|-----------|-------------------------------------|---------------------------------------------------|
| p0010     | Drive commissioning parameter fil-  | Sets the parameter filter to commission a drive.  |
|           | ter                                 | 0: Ready                                          |
|           |                                     | 1: Quick commissioning (factory setting)          |
|           |                                     | 15: Data sets                                     |
| r0051.01  | CO/BO: Drive data set DDS effective | Displays the effective Drive Data Set (DDS).      |
| p0180     | Number of Drive data set (DDS)      | p0180 = 1, 2, 3 or 4                              |
|           |                                     | Factory setting: 1                                |
| p0819[02] | Copy drive data set DDS             | [0] Source Drive Data Set                         |
|           |                                     | [1] Target Drive Data Set                         |
|           |                                     | [2] $0 \rightarrow 1$ : Starts the copy operation |
|           |                                     | Factory setting: 0                                |

# Advanced commissioning

# 6.28 Switchover between different settings

| Parameter | Description                           | Setting                                                                    |
|-----------|---------------------------------------|----------------------------------------------------------------------------|
| p0820[0n] | BI: Drive data set DDS selection, bit | Sets the signal source to select DDS, bit 0.                               |
|           | 0                                     | Factory setting: 0                                                         |
| p0821[0n] | Bl: Drive data set DDS selection, bit | Sets the signal source to select DDS, bit 1.                               |
|           | 1                                     | Factory setting: 0                                                         |
| p0826[0n] | Motor changeover, motor number        | Sets the freely assignable motor number for the drive data set changeover. |
|           |                                       | Factory setting: 0                                                         |

# Data backup and series commissioning

#### Saving settings outside the converter

After commissioning, your settings are saved in the converter so that they are protected against power failure.

We recommend that you additionally back up the settings on a storage medium outside the converter. Without backup, your settings could be lost if the converter develops a defect.

The following storage media are available for your settings:

- Memory card
- PG/PC
- SINAMICS G120 Smart Access

#### Carrying out series commissioning

Series commissioning is the commissioning of several identical converters.

#### Precondition

The converter to which the settings are transferred has the same article number and the same or a later firmware version as the source converter.

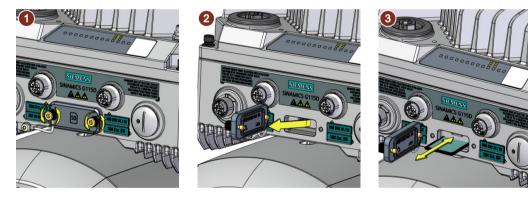
#### Overview of the procedure

- 1. Commission the first converter.
- 2. Back up the settings of the first converter to an external storage medium.
- 3. Transfer the settings from the first converter to an additional converter via the data storage medium.

# 7.1 Transferring settings using a memory card

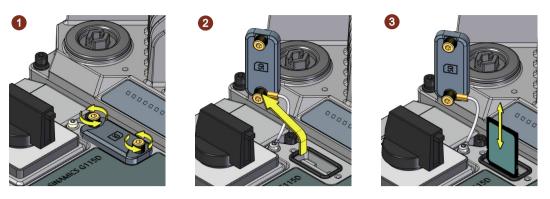
# 7.1.1 Memory cards

# **Recommended memory cards**




| Scope of delivery                   | Article number     |
|-------------------------------------|--------------------|
| Memory card without firmware        | 6SL3054-4AG00-2AA0 |
| Memory card with firmware V4.7 SP13 | 6SL3054-7TG00-2BA0 |

# Inserting a memory card


You may find the memory card slot on the G115D Wiring Module. See the following images for the detailed location:

# SINAMICS G115D converter with SIMOGEAR geared motor



Fixings: 2 × M3 screws Tightening torque: 0.8 Nm (7.1 lbf.in)

SINAMICS G115D wall-mounted converter



Fixings: 2 × M3 screws Tightening torque: 0.8 Nm (7.1 lbf.in)

#### Note

For more information about performing a converter firmware upgrade and downgrade by using a memory card, see the following chapter:

Firmware upgrade and downgrade (Page 389)

# **Further information**

#### Using memory cards from other manufacturers

If you do not use a recommended SD memory card, you must format it as follows:

- Insert the card into your PC's card reader.
- Command to format the card: format x: /fs:fat or format x: /fs:fat32 (x: Drive code of the memory card on your PC.)

#### Functional restrictions with memory cards from other manufacturers

The following functions are either not possible – or only with some restrictions – when using memory cards from other manufacturers:

- Know-how protection is only possible with one of the recommended Siemens memory cards.
- Under certain circumstances, memory cards from other manufacturers do not support writing or reading data from/to the converter.

# 7.1.2 Converter $\rightarrow$ Memory card

We recommend that you insert a memory card before switching on the converter power supply for the first time. The converter then automatically ensures that the actual parameter settings are saved both in the converter as well as on the card.

You can transfer parameter settings from the converter to the memory card by the following methods:

- Automatic transfer
- Transfer with Startdrive
- Transfer with SINAMICS G120 Smart Access

#### Automatic transfer

#### Precondition

The converter power supply has been switched off.

#### Procedure

1. Insert an empty memory card into the memory card slot.

#### Note

#### Accidental firmware update

If the memory card contains a converter firmware, the converter may perform a firmware update after the supply voltage has been switched on.

Firmware upgrade and downgrade (Page 389)

#### Note

#### Accidental overwrite of the converter settings

When the supply voltage is switched on, the converter automatically accepts the settings already backed up on the memory card. If you use a memory card on which settings are already backed up, you will overwrite the settings of the converter.

- Use an empty memory card for the first automatic back-up of your settings.
- 2. Switch on the converter power supply.

After the converter power supply has been switched on, it copies all modified parameters to the memory card.

### **Transferring using Startdrive**

#### Precondition

- A memory card is inserted in the converter.
- Connection between the PG/PC and converter has been properly established via a USB cable or the fieldbus.
- You have installed the Startdrive commissioning tool on your PG/PC.

#### Procedure

- 1. Go online.
- 2. Proceed as follows to transfer converter settings to the memory card.

| - Dation                     | Backup/Restore                                          |
|------------------------------|---------------------------------------------------------|
| Project12     Add new device | Save RAM data to EEPROM                                 |
| h Devices & networks         |                                                         |
| 👻 🊘 G115D_PN [G115D PN]      |                                                         |
| Device configuration         | RAM P                                                   |
| 🗓 Online & diagnostics       | Save                                                    |
| 🚰 Parameter                  | EEPROM                                                  |
| 🕂 Commissioni                |                                                         |
| ● / ance t                   | Save the data from the drive on memory cards:           |
| Online ac 255                |                                                         |
| Diagnostics                  |                                                         |
| Functions                    |                                                         |
| Backing up/reset             | Parameter set in the drive Parameter set on memory card |
|                              | 10) Source/target standart                              |

3. Wait until Startdrive reports that data backup has been completed.

You have backed up the converter settings to the memory card.  $\hfill\square$ 

### **Transferring using SINAMICS G120 Smart Access**

You can use the SINAMICS G120 Smart Access to transfer settings. For more information on the transferring process, see Section "Backup and restore" in the SINAMICS G120 Smart Access Operating Instructions.

Overview of the manuals (Page 592)

### 7.1.3 Memory card $\rightarrow$ converter

You can transfer parameter settings from a memory card to the converter by the following methods:

- Automatic transfer
- Transfer with Startdrive
- Transfer with SINAMICS G120 Smart Access

# Automatic transfer

#### Precondition

The converter power supply has been switched off.

#### Procedure

- 1. Insert the memory card into the memory card slot.
- 2. Switch on the converter power supply.

If there is valid parameter data on the memory card, the converter accepts the data from the memory card.

## **Transferring using Startdrive**

#### Precondition

- A memory card is inserted in the converter.
- Connection between the PG/PC and converter has been properly established via a USB cable or the fieldbus.
- You have installed the Startdrive commissioning tool on your PG/PC.

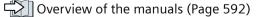
#### Procedure

- 1. Go online.
- 2. Proceed as follows to transfer parameter settings from the memory card to the converter.



3. Wait until Startdrive has signaled that the data transfer has been completed.

#### Note


After the transferring process has completed, safely remove the memory card.

You have transferred your settings from a memory card to the converter.  $\hfill\square$ 

Your settings on the converter become effective after the next time you switch on its power supply.

## **Transferring using SINAMICS G120 Smart Access**

You can use the SINAMICS G120 Smart Access to transfer settings. For more information on the transferring process, see Section "Backup and restore" in the SINAMICS G120 Smart Access Operating Instructions.



# 7.1.4 Activating message for a memory card that is not inserted

# Function

The converter identifies whether a memory card is not inserted, and signals this state. The message is deactivated in the converter factory setting.

# Activate message

#### Procedure

1. Set p2118[x] = 1101, x = 0, 1, ... 19

2. Set p2119[x] = 2

Message A01101 for a memory card that is not inserted is activated.

To cyclically signal to a higher-level control that a memory card is not inserted, interconnect parameter r9401 to the send data of a PROFIdrive telegram of your choice.

# Deactivate message

#### Procedure

1. Set p2118[x] = 1101, x = 0, 1, ... 19

2. Set p2119[x] = 3

Message A01101 for a memory card that is not inserted is deactivated.  $\ensuremath{\square}$ 

| Parameter   | Description                              | Setting                                                                |
|-------------|------------------------------------------|------------------------------------------------------------------------|
| p2118[0 19] | Change message type, mes-<br>sage number | Selects faults or alarms for which the message type should be changed. |
|             |                                          | Factory setting: 0                                                     |
| p2119[0 19] | Change message type                      | Sets the message type for the selected fault or alarm.                 |
|             |                                          | 1: Fault (factory setting)                                             |
|             |                                          | 2: Alarm                                                               |
|             |                                          | 3: No message                                                          |
| r9401       | Safely remove memory card                | Displays the status of the memory card.                                |
|             | status                                   | Bit 00: Memory card inserted                                           |
|             |                                          | Bit 01: Memory card activated                                          |
|             |                                          | Bit 02: Siemens memory card                                            |
|             |                                          | Bit 03: Memory card used as USB data storage medium from the PC        |

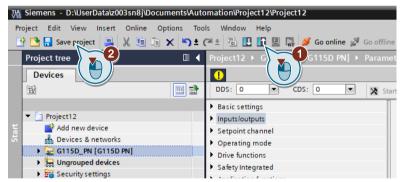
7.2 Transferring settings using a PG/PC

# 7.2 Transferring settings using a PG/PC

# 7.2.1 Converter $\rightarrow$ PG/PC

You can transfer parameter settings from the converter to a PG/PC by the following method:

- Transfer with Startdrive
- Transfer with SINAMICS G120 Smart Access


### **Transferring using Startdrive**

#### Precondition

- Connection between the PG/PC and converter has been properly established via a USB cable or the fieldbus.
- You have installed the Startdrive commissioning tool on your PG/PC.

#### Converter $\rightarrow$ PC/PG

- 1. Make sure that the converter is offline with Startdrive.
- 2. Proceed as follows to transfer settings from the converter to the PG/PC:



3. Wait until Startdrive prompts that the transfer procedure is complete.

You have transferred the settings from the converter to the PG/PC with Startdrive.  $\hfill\square$ 

# **Transferring using SINAMICS G120 Smart Access**

You can use the SINAMICS G120 Smart Access to transfer settings. For more information on the transferring process, see Section "Backup and restore" in the SINAMICS G120 Smart Access Operating Instructions.

Cverview of the manuals (Page 592)

7.2 Transferring settings using a PG/PC

# 7.2.2 PG/PC $\rightarrow$ converter

You can transfer parameter settings from a PG/PC to the converter by the following method:

- Transfer with Startdrive
- Transfer with SINAMICS G120 Smart Access

#### **Transferring using Startdrive**

#### Precondition

- Connection between the PG/PC and converter has been properly established via a USB cable or the fieldbus.
- You have installed the Startdrive commissioning tool on your PG/PC.

The procedure depends on whether you also transfer settings of safety functions or not.

#### Procedure with Startdrive without enabled safety functions

- 1. Go online.
- 2. Proceed as follows to transfer settings from the PG/PC to the converter:

| % Siemens - D:\UserData\z003sn8j\Documents\Automation\Project12\Project12 |          |                                      |                                                                                 |                                               |
|---------------------------------------------------------------------------|----------|--------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                           |          |                                      | Options Tools Window Help<br>🖹 🗙 🎝 ± (A ± 🗟 🛄 🚹 🖳 🖾 🕼 🖉 Go online 🖉 Go          | o offline 🔐 🖪 🖪 🗴 🚽                           |
| Load pre                                                                  |          | before loading                       |                                                                                 | ×                                             |
| Status                                                                    | 1        | Target                               | Message                                                                         | Action                                        |
| +I                                                                        | <u> </u> | ▼ G115D_PN                           | Ready for loading.                                                              | Load 'G115D_PN'                               |
|                                                                           |          | <ul> <li>Parameter assign</li> </ul> | Please note:                                                                    |                                               |
|                                                                           | 0        | EEPROM                               | Save the parameterization in the EEPROM after the download                      | Save the<br>parameterization in<br>the EEPROM |
|                                                                           | 4        | DIP switch active                    | DIP switch active: These parameter settings are not accepted during a download. |                                               |
|                                                                           |          |                                      |                                                                                 |                                               |
| <                                                                         |          |                                      |                                                                                 |                                               |
|                                                                           |          |                                      |                                                                                 | Refresh                                       |
|                                                                           |          |                                      | Finish                                                                          | Load Cancel                                   |

- 3. Wait until Startdrive prompts that the transfer procedure is complete.
- 4. Go offline.

You have transferred the settings from the PG/PC to the converter with Startdrive.  $\hfill\square$ 

#### Procedure with Startdrive when the safety functions are enabled

#### 7.2 Transferring settings using a PG/PC

| Pri   | oject Edit View Insert Online<br>Project_0_V<br>DDS: 0 ▼ CDS: 0                      |                         | RM meta checks Hwon<br>Go online Go office R T T T T T T T T T T T T T T T T T T |
|-------|--------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|
| Start | Basic settings     Inputs/outputs     Setpoint channel     Operating mode            | Selecting sa            | Selecting safety functionality                                                   |
|       | Drive functions     Shutdown functions     Line contactor control                    | Actual value sensing    | Configuring the actual value sensing                                             |
|       | Brake control     Safety Integrated                                                  | Functions               | Configuring the selected safety functions                                        |
|       | Vdc controller<br>Automatic restart function<br>Flying restart                       | Test stop               | Setting the time interval for the test stop, to test the correct shutdown        |
|       | Messages/monitoring     Application functions     Communication     Interconnections | F-DI / F-DO / PROFIsafe | Setting the filter time, discrepancy time, PROFIsafe<br>address                  |

- 1. Save the project.
- 2. Select the 🛄 button to transfer settings from the PG/PC to the converter.
- 3. Connect Startdrive online with the drive.
- 4. Press the 🗙 button to start the safety commissioning.
- Enter the password for the safety functions.
   If the password is the factory default, you are prompted to change the password.
   If you try to set a password that is not permissible, the old password will not be changed.
- 6. Press the X button to end the safety commissioning.
- 7. Confirm the prompt for saving your settings (copy RAM to ROM).
- 8. Disconnect the online connection.
- 9. Switch off the converter power supply.
- 10. Wait until all LEDs on the converter go dark (no voltage condition).

11. Switch on the converter power supply again.

You have transferred the settings from the PG/PC to the converter with Startdrive and have activated the safety functions.

#### 

#### **Transferring using SINAMICS G120 Smart Access**

You can use the SINAMICS G120 Smart Access to transfer settings. For more information on the transferring process, see Section "Backup and restore" in the SINAMICS G120 Smart Access Operating Instructions.

Cverview of the manuals (Page 592)

# 7.3 Other ways to back up settings

In addition to the default setting, the converter has an internal memory for backing up three other settings.

On the memory card, you can back up 99 other settings in addition to the default setting.

Additional information is available on the Internet: Memory options (<u>http://</u>support.automation.siemens.com/WW/view/en/43512514)

# 7.4 Write protection

The write protection prevents unauthorized changing of the converter settings. If you are working with Startdrive, write protection is only effective online. The offline project is not write-protected.

Write protection is applicable for all user interfaces:

- Startdrive PC tool
- Parameter changes via fieldbus
- SINAMICS G120 Smart Access

No password is required for write protection.

# **Function description**

### Activate and deactivate write protection

| Parameter | Description                                      | Setting                                                                                  |
|-----------|--------------------------------------------------|------------------------------------------------------------------------------------------|
| r7760     | Write protection/know-how protec-<br>tion status | Displays the status for the write protection and know-how protection.                    |
|           |                                                  | Bit 00: Write protection active                                                          |
| p7761     | Write protection                                 | Setting for activating/deactivating the write protec-<br>tion for adjustable parameters. |
|           |                                                  | 0: Deactivate write protection                                                           |
|           |                                                  | 1: Activate write protection                                                             |
|           |                                                  | Factory setting: 0                                                                       |

# **Exceptions to write protection**

### Parameters that can be changed with active write protection

| Parameter | Description                               | Setting                                             |
|-----------|-------------------------------------------|-----------------------------------------------------|
| p0003     | Access level                              | Sets the access level to read and write parameters. |
| p0010     | Drive commissioning parameter fil-<br>ter | Sets the parameter filter to commission a drive.    |
| p0124[0n] | CU detection using LED                    | Identification of the Control Unit using an LED.    |

| Parameter      | Description                                       | Setting                                                                                         |
|----------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------|
| p0970          | Reset drive parameters                            | The parameter is used to initiate the reset of the drive parameters.                            |
| p0971          | Save parameters                                   | Setting to save parameters in the non-volatile mem-<br>ory.                                     |
| p0972          | Drive unit reset                                  | Sets the required procedure to execute a hardware reset for the drive unit.                     |
| p2111          | Alarm counter                                     | Number of alarms that have occurred after the last reset.                                       |
| p3950          | Service parameter                                 | For service personnel only.                                                                     |
| p3981          | Acknowledge drive object faults                   | Setting to acknowledge all active faults of a drive object.                                     |
| p3985          | Master control mode selection                     | Sets the mode to change over the master control / LOCAL mode.                                   |
| p7761          | Write protection                                  | Setting for activating/deactivating the write protec-<br>tion for adjustable parameters.        |
| p8805          | Identification and Maintenance 4<br>Configuration | Sets the configuration for the content of identifica-<br>tion and maintenance 4 (I&M 4, p8809). |
| p8806[053<br>] | Identification and Maintenance 1                  | Parameters for the PROFINET data set "Identifica-<br>tion and Maintenance 1" (I&M 1).           |
| p8807[015<br>] | Identification and Maintenance 2                  | Parameters for the PROFINET data set "Identifica-<br>tion and Maintenance 2" (I&M 2).           |
| p8808[053<br>] | Identification and Maintenance 3                  | Parameters for the PROFINET data set "Identifica-<br>tion and Maintenance 3" (I&M 3).           |
| p8809[053<br>] | Identification and Maintenance 4                  | Parameters for the PROFINET data set "Identifica-<br>tion and Maintenance 4" (I&M 4).           |
| p9400          | Safely remove memory card                         | Setting and display when memory card is "removed safely".                                       |
| p9484          | BICO interconnections search sig-<br>nal source   | Sets the signal source (BO/CO parameter, BICO co-<br>ded) to search in the signal sinks.        |

For more information about those parameters, see the List Manual.

# 7.5 Know-how protection

### Overview

Know-how protection prevents unauthorized reading of the converter settings.

To protect your converter settings against unauthorized copying, in addition to know-how protection, you can also activate copy protection.

## Precondition

Know-how protection is applicable for the following user interfaces:

- Startdrive PC tool
- Parameter changes via fieldbus

Know-how protection requires a password.

| Combination of know-how protection and copy protection                                                   | Is a memory card necessary?                                    |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Know-how protection without copy protection                                                              | The converter can be operated with or without memory card.     |
| Know-how protection with basic copy protection<br>Know-how protection with extended copy protec-<br>tion | The converter can only be operated with a Siemens memory card. |

# **Function description**

The active know-how protection provides the following:

- With just a few exceptions, the values of all adjustable parameters p ... are invisible.
  - Several adjustable parameters can be read and changed when know-how protection is active. You can find a list of the adjustable parameters that can be read and changed in the List Manual under "KHP\_WRITE\_NO\_LOCK".
     In addition, you can define an exception list of adjustable parameters, which end users may change.
  - Several adjustable parameters can be read but not changed when know-how protection is active. You can find a list of the adjustable parameters that can be read in the List Manual under "KHP\_ACTIVE\_READ".
- The values of monitoring parameters r ... remain visible.
- Adjustable parameters cannot be changed using Startdrive.
- Locked functions:
  - Downloading converter settings using Startdrive
  - Automatic controller optimization
  - Stationary or rotating measurement of the motor data identification
  - Deleting the alarm history and the fault history
  - Generating acceptance documents for safety functions
- Executable functions:
  - Restoring factory settings
  - Acknowledging faults
  - Displaying faults, alarms, fault history, and alarm history
  - Reading out the diagnostic buffer
  - Controlling the converter via Startdrive
  - Uploading adjustable parameters that can be changed or read when know-how protection is active.
  - Displaying acceptance documents for safety functions

When know-how protection is active, support can only be provided (from Technical Support) after prior agreement from the machine manufacturer (OEM).

#### Know-how protection without copy protection

You can transfer converter settings to other converters using a memory card or Startdrive.

#### Know-how protection with basic copy protection

After replacing a converter, to be able to operate the new converter with the settings of the replaced converter without knowing the password, the memory card must be inserted in the new converter.

#### Know-how protection with extended copy protection

It is not possible to insert and use the memory card in another converter without knowing the password.

#### Commissioning know-how protection

- 1. Check as to whether you must extend the exception list.
- 2. Activate the know-how protection.

# 7.5.1 Extending the exception list for know-how protection

In the factory setting, the exception list p7764[0...n] only includes the password for know-how protection.

Before activating know-how protection, you can additionally enter the adjustable parameters in the exception list, which must still be able to be read and changed by end users – even if know-how protection has been activated.

You do not need to change the exception list, if, with exception of the password, you do not require additional adjustable parameters in the exception list.

#### Absolute know-how protection

If you remove password p7766[0...29] from the exception list, it is no longer possible to enter or change the password for know-how protection.

You must reset the converter to the factory settings in order to be able to gain access to the converter adjustable parameters. When restoring the factory settings, you lose what you have configured in the converter, and you must recommission the converter.

| Parameter      | Description                                        | Setting                                                               |
|----------------|----------------------------------------------------|-----------------------------------------------------------------------|
| p7763          | KHP OEM exception list number of indices for p7764 | Sets the number of parameters for the OEM exception list (p7764[0n]). |
|                |                                                    | Factory setting: 1                                                    |
| p7764[0n]      | KHP OEM exception list                             | Sets parameters that should be excluded from know-how protection.     |
|                |                                                    | Factory setting [0] 7766, [1499 ] 0                                   |
| p7766[029<br>] | KHP password input                                 | Sets the password for know-how protection.                            |

# 7.5.2 Activating and deactivating know-how protection

## Activating know-how protection

#### Preconditions

- The converter has now been commissioned.
- You have generated the exception list for know-how protection.
- To guarantee know-how protection, you must ensure that the project does not remain at the end user as a file.

#### **Function description**

#### Activating know-how protection

- 1. Enter a password of your choice in p7767. Each index of p7767 corresponds with a character in the ASCII format.
- 2. Complete entry of the password with p7767[29] = 0.
- 3. Enter the same password in p7768 as that for p7767.
- 4. Complete entry of the password with p7768[29] = 0.

The know-how protection for the converter is activated.  $\hfill\square$ 

#### Deactivating know-how protection

- 1. Enter the password for the know-how protection in p7766. Each index of p7766 corresponds with a character in the ASCII format.
- 2. Complete entry of the password with p7766[29] = 0.

The know-how protection for the converter is deactivated.  $\hfill\square$ 

| Parameter      | Description                                     | Setting                                                                |
|----------------|-------------------------------------------------|------------------------------------------------------------------------|
| r7758[019]     | KHP Control Unit serial<br>number               | Displays the actual serial number of the Control Unit.                 |
| p7759[019<br>] | KHP Control Unit refer-<br>ence serial number   | Sets the reference serial number for the Control Unit.                 |
|                | Write protection/know-<br>how protection status | Bit 01: Know-how protection active                                     |
|                |                                                 | Bit 02: Know-how protection temporarily unlocked                       |
|                |                                                 | Bit 03: Know-how protection cannot be deactivated                      |
|                |                                                 | Bit 04: Extended copy protection active                                |
|                |                                                 | Bit 05: Basic copy protection active                                   |
|                |                                                 | Bit 06: Trace and measurement functions for diagnostic purposes active |

| Parameter      | Description                                  | Setting                                                                                                                                                    |
|----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| p7765          | KHP configuration                            | Configures whether the parameters and DCC data encrypted<br>on the memory card should be protected before using on<br>other memory cards or Control Units. |
|                |                                              | Bit 00: Extended copy protection - linked to the memory card and CU                                                                                        |
|                |                                              | Bit 01: Basic copy protection - linked to the memory card                                                                                                  |
|                |                                              | Bit 02: Permit trace and measuring functions for diagnostic purposes                                                                                       |
| p7766[029<br>] | KHP password input                           | Sets the password for know-how protection.                                                                                                                 |
| p7767[029<br>] | KHP password new                             | Sets the new password for know-how protection.                                                                                                             |
| p7768[029<br>] | KHP password confirma-<br>tion               | Confirms the new password for know-how protection.                                                                                                         |
| p7769[020<br>] | KHP memory card refer-<br>ence serial number | Sets the reference serial number for the memory card.                                                                                                      |
| r7843[020]     | Memory card serial num-<br>ber               | Displays the actual serial number of the memory card.                                                                                                      |

## **Further information**

#### Preventing data reconstruction from the memory card

As soon as know-how protection has been activated, the converter only backs up encrypted data to the memory card.

In order to guarantee know-how protection, after activating know-how protection, we recommend that you insert a new, empty memory card. For memory cards that have already been written to, previously backed up data that was not encrypted can be reconstructed.

# 8

# Alarms, faults and system messages

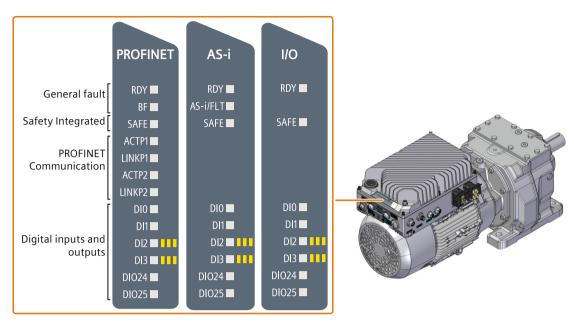
The converter has the following diagnostic types:

• LED

The LEDs of the converter immediately inform you about the most important converter states.

- Alarms and faults Every alarm and every fault has a unique number. The converter signals alarms and faults via the following interfaces:
  - Fieldbus
  - Terminal strip with the appropriate setting
  - SINAMICS G120 Smart Access
  - Startdrive
- Identification & maintenance data (I&M) If requested, the converter sends data to the higher-level control via PROFINET:
  - Converter-specific data
  - Plant-specific data

# 8.1 Status LED overview


# LED status indicators

A G115D converter has a number of LEDs which are designed to indicate the operational state of the converter. The LEDs are used to indicate the following states:

- General fault conditions
- Communication status
- Safety-Integrated status
- Input and output status

For different communication variants, the number of LEDs may vary. The following figure illustrates the location of the various LEDs on the converter:

# 8.1 Status LED overview



# Explanation of symbols for the following tables

| LED is ON                           |
|-------------------------------------|
| LED is OFF                          |
| LED flashes slowly                  |
| LED flashes quickly                 |
| LED flashes with variable frequency |

Please contact Technical Support for LED states that are not described in the following.

## **Basic states**

| RDY        | Explanation                                             |
|------------|---------------------------------------------------------|
| <b>)</b>   | Temporary state after the supply voltage is switched on |
| -<br>-<br> | The converter is free of faults                         |
|            | Commissioning or reset to factory settings              |

8.1 Status LED overview

| RDY | Explanation                                                                                          |
|-----|------------------------------------------------------------------------------------------------------|
|     | A fault is active or firmware update failed                                                          |
|     | Firmware update is active                                                                            |
|     | Converter waits until the power supply is switched off and switched on again after a firmware update |

#### **PROFINET** fieldbus

| BF | Explanat               | ion                                                                                                  |  |  |  |  |
|----|------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
|    | Data excł              | Data exchange between the converter and control system is active                                     |  |  |  |  |
|    | The fieldb             | The fieldbus is improperly configured                                                                |  |  |  |  |
|    | RDY                    | In conjunction with a synchronously flashing LED RDY:                                                |  |  |  |  |
|    | *                      | Converter waits until the power supply is switched off and switched on again after a firmware update |  |  |  |  |
|    | No comm                | nunication with higher-level controller                                                              |  |  |  |  |
|    | RDY                    | In conjunction with an asynchronously flashing LED RDY:                                              |  |  |  |  |
|    | *                      | Incorrect memory card                                                                                |  |  |  |  |
|    | Firmware update failed |                                                                                                      |  |  |  |  |
|    | Firmware               | Firmware update is active                                                                            |  |  |  |  |

# Integrated safety functions

| SAFE | Explanation                                                                      |
|------|----------------------------------------------------------------------------------|
| 黨    | One or more safety functions are enabled, but not active                         |
|      | One or more safety functions are active and error-free                           |
|      | The converter has detected a safety function fault and initiated a stop response |

8.1 Status LED overview

#### **PROFINET** fieldbus

| ACT | LNK | Explanation                                                                                                  |
|-----|-----|--------------------------------------------------------------------------------------------------------------|
| 黨   |     | Communication via PROFINET is error-free. Converter and open-loop control ex-<br>change actual data          |
|     |     | The converter is establishing communication with a higher-level control or a PG/PC with Startdrive installed |
|     |     | A physical connection has been set up                                                                        |
|     |     | Communication via PROFINET is not active                                                                     |

# Digital inputs and digital inputs/outputs

| DI &<br>DI/O | Explanation                                                               |
|--------------|---------------------------------------------------------------------------|
| <b>)</b>     | The associated digital input or digital input/output has the "high" state |
|              | The associated digital input or digital input/output has the "low" state  |

# AS-i fieldbus

| AS-i /<br>FLT | Explanation                                               |                                                                                                      |  |  |  |  |
|---------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
|               | System Oł                                                 | System OK                                                                                            |  |  |  |  |
|               | AS-i maste                                                | er not connected or firmware update failed                                                           |  |  |  |  |
|               | The fieldb                                                | us is improperly configured                                                                          |  |  |  |  |
|               | RDY                                                       | In conjunction with a synchronously flashing LED RDY:                                                |  |  |  |  |
|               | *                                                         | Converter waits until the power supply is switched off and switched on again after a firmware update |  |  |  |  |
|               | No communications between processors within the converter |                                                                                                      |  |  |  |  |
|               | RDY                                                       | In conjunction with an asynchronously flashing LED RDY:                                              |  |  |  |  |
|               | *                                                         | Incorrect memory card                                                                                |  |  |  |  |
|               | Slave address 0                                           |                                                                                                      |  |  |  |  |
|               | Converter trip                                            |                                                                                                      |  |  |  |  |
|               | Firmware update is active                                 |                                                                                                      |  |  |  |  |

8.3 Identification & maintenance data (I&M)

# 8.2 System runtime

By evaluating the system runtime of the converter, you can decide whether you must replace components subject to wear such as fans, motors and gear units.

## **Principle of operation**

The converter starts the system runtime as soon as the converter is supplied with power. The system runtime stops when the converter is switched off.

The system runtime comprises r2114[0] (milliseconds) and r2114[1] (days):

System runtime = r2114[1] × days + r2114[0] × milliseconds

If r2114[0] has reached a value of 86,400,000 ms (24 hours), the converter sets the value of r2114[0] to 0 and increases the value of r2114[1] by 1.

Using system runtime, you can track the chronological sequence of faults and alarms over time. When a corresponding message is triggered, the converter transfers the parameter values r2114 to the corresponding parameters of the alarm or fault buffer.

| Parameter | Description          | Setting                                               |
|-----------|----------------------|-------------------------------------------------------|
| r2114[01] | Total system runtime | Displays the total system runtime for the drive unit. |
|           |                      | Index:                                                |
|           |                      | [0]: Milliseconds                                     |
|           |                      | [1]: Days                                             |

You cannot reset the system runtime.

# 8.3 Identification & maintenance data (I&M)

#### I&M data

The converter supports the following identification and maintenance (I&M) data.

| l&M<br>data | Format              | Explanation                        | Associated pa-<br>rameters | Example for the content |
|-------------|---------------------|------------------------------------|----------------------------|-------------------------|
| 1&M0        | u8[54] PROFINET     | Converter-specific data, read only | -                          | See below               |
| I&M1        | Visible String [32] | Plant/system identifier            | p8806[0 31]                | "ak12-<br>ne.bo2=fu1"   |
|             | Visible String [22] | Location code                      | p8806[3253]                | "sc2+or45"              |
| 1&M2        | Visible String [16] | Date                               | p8807[0 15]                | "2013-01-21<br>16:15"   |

| I&M<br>data | Format              | Explanation                                                                             | Associated pa-<br>rameters | Example for the content   |
|-------------|---------------------|-----------------------------------------------------------------------------------------|----------------------------|---------------------------|
| I&M3        | Visible String [54] | Any comment                                                                             | p8808[0 53]                | -                         |
| I&M4        | Octet String[54]    | Check signature to track changes for Safety Integrated.                                 | p8809[0 53]                | Values of<br>r9781[0] and |
|             |                     | This value can be changed by the user.                                                  |                            | r9782[0]                  |
|             |                     | The test signature is reset to the value generated by the machine is p8805 = 0 is used. |                            |                           |

When requested, the converter transfers its I&M data to a higher-level control or to a PC/PG with installed Startdrive.

## I&M0

| Designation           | Format              | Example for the con-<br>tent | Valid for PROFI-<br>NET |
|-----------------------|---------------------|------------------------------|-------------------------|
| Manufacturer-specific | u8[10]              | 00 00 hex                    |                         |
| MANUFACTURER_ID       | u16                 | 42d hex (=Siemens)           | 1                       |
| ORDER_ID              | Visible String [20] | "6SL3246-0BA22-1FA<br>0"     | ✓                       |
| SERIAL_NUMBER         | Visible String [16] | "T-R32015957"                | 1                       |
| HARDWARE_REVISION     | u16                 | 0001 hex                     | 1                       |
| SOFTWARE_REVISION     | char, u8[3]         | "V" 04.70.19                 | 1                       |
| REVISION_COUNTER      | u16                 | 0000 hex                     | 1                       |
| PROFILE_ID            | u16                 | 3A00 hex                     | ✓                       |
| PROFILE_SPECIFIC_TYPE | u16                 | 0000 hex                     | ✓                       |
| IM_VERSION            | u8[2]               | 01.02                        | 1                       |
| IM_SUPPORTED          | bit[16]             | 001E hex                     | 1                       |

# 8.4 Alarms, alarm buffer, and alarm history

#### Overview

An alarm generally indicates that the converter may no longer be able to maintain the operation of the motor in future.

The extended diagnostics have an alarm buffer and an alarm history, in which the converter stores the most recent alarms.

#### **Function description**

Alarms have the following properties:

- Incoming alarms have no direct influence on the converter.
- Alarms disappear when the cause is eliminated.
- Alarms do not have to be acknowledged.
- Alarms are displayed as follows:
  - Display via bit 7 in status word 1 (r0052)
  - Display in Startdrive
  - Display in the SINAMICS G120 Smart Access

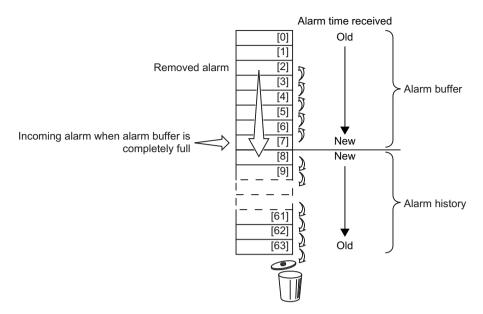
The alarm code or alarm value describes the cause of the alarm.

#### Alarm buffer

| Alarm code | Alarm code Alarm |          | Alarn    | n time recei | ved | Alarm time | e removed |
|------------|------------------|----------|----------|--------------|-----|------------|-----------|
|            | 132              | float    | Days     | ms           |     | Days       | ms        |
| r2122[0]   | r2124[0]         | r2134[0] | r2145[0] | r2123[0]     | old | r2146[0]   | r2125[0]  |
| [1]        | [1]              | [1]      | [1]      | [1]          |     | [1]        | [1]       |
| [2]        | [2]              | [2]      | [2]      | [2]          |     | [2]        | [2]       |
| [3]        | [3]              | [3]      | [3]      | [3]          |     | [3]        | [3]       |
| [4]        | [4]              | [4]      | [4]      | [4]          |     | [4]        | [4]       |
| [5]        | [5]              | [5]      | [5]      | [5]          |     | [5]        | [5]       |
| [6]        | [6]              | [6]      | [6]      | [6]          | - ↓ | [6]        | [6]       |
| [7]        | [7]              | [7]      | [7]      | [7]          | new | [7]        | [7]       |

The converter saves incoming alarms in the alarm buffer. An alarm includes an alarm code, an alarm value, and two alarm times:

- Alarm code: r2122
- Alarm value: r2124 in fixed-point format "I32", r2134 in floating-point format "Float"
- Alarm time received = r2145 + r2123
- Alarm time removed = r2146 + r2125


The converter takes its internal time calculation to save the alarm times.

System runtime (Page 361)

Up to 8 alarms can be saved in the alarm buffer.

In the alarm buffer, the warnings are sorted according to "Warning time received". If the alarm buffer is completely filled and an additional alarm occurs, then the converter overwrites the values with Index [7].

#### Alarm history



If the alarm buffer is completely filled and an additional alarm occurs, the converter shifts all removed alarms into the alarm history. The following occurs in detail:

- To create space after position [8] in the alarm history, the converter shifts the alarms already stored in the alarm history "down" by one or more positions.
   If the alarm history is completely full, the converter will delete the oldest alarms.
- 2. The converter moves the removed alarms from the alarm buffer to the now freed up positions of the alarm history.

Alarms that have not been removed remain in the alarm buffer.

- 3. The converter closes gaps in the alarm buffer that occurred when the removed alarms were shifted in the alarm history by shifting the alarms that have not been removed "up".
- 4. The converter saves the received alarm as the latest alarm in the alarm buffer.

The alarm history saves up to 56 alarms.

In the alarm history, alarms are sorted according to the "alarm time received". The latest alarm has Index [8].

# Parameters

## Parameters of the alarm buffer and the alarm history

| Parameter   | Description                              | Setting                                                                                                             |
|-------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| p2111       | Alarm counter                            | Number of alarms that have occurred after the last reset.                                                           |
|             |                                          | When setting $p2111 = 0$ , the following is initiated:                                                              |
|             |                                          | • All of the alarms that have been removed from the alarm buffer [07] are transferred into the alarm history [863]. |
|             |                                          | • The alarm buffer [07] is deleted.                                                                                 |
|             |                                          | Factory setting: 0                                                                                                  |
| r2122[0 63] | Alarm code                               | Displays the numbers of the alarms that have oc-<br>curred.                                                         |
| r2123[0 63] | Alarm time received in milli-<br>seconds | Displays the time in milliseconds when the alarm occurred.                                                          |
| r2124[0 63] | Alarm value                              | Displays additional information about the alarm.                                                                    |
| r2125[0 63] | Alarm time removed in milli-<br>seconds  | Displays the time in milliseconds when the alarm was removed.                                                       |
| r2132       | CO: Actual alarm code                    | Displays the code of the alarm that last occurred.                                                                  |
| r2134[0 63] | Alarm value for float values             | Displays additional information about the alarm that occurred for float values.                                     |
| r2145[0 63] | Alarm time received in days              | Displays the time in days when the alarm occurred.                                                                  |
| r2146[0 63] | Alarm time removed in days               | Displays the time in days when the alarm was re-<br>moved.                                                          |

#### Extended settings for alarms

| Parameter         | Description                                | Setting                                                                |
|-------------------|--------------------------------------------|------------------------------------------------------------------------|
| You can change up | to 20 different alarms into fault          | s or suppress alarms:                                                  |
| p2118[0 19]       | Changing message type, mes-<br>sage number | Selects faults or alarms for which the message type should be changed. |
|                   |                                            | Factory setting: 0                                                     |
| p2119[0 19]       | Changing message type, type                | Sets the message type for the selected fault or alarm.                 |
|                   |                                            | 1: Fault<br>2: Alarm<br>3: No message                                  |
|                   |                                            | Factory setting: 1                                                     |

For more information about this function, see function diagram 8075 and parameter description in the List Manual.

8.5 Faults, fault buffer and fault history

# 8.5 Faults, fault buffer and fault history

#### Overview

A fault generally indicates that the converter can no longer maintain the operation of the motor.

The extended diagnostics have a fault buffer and a fault history, in which the converter stores the most recent faults.

#### **Function description**

Faults have the following properties:

- In general, a fault leads to the motor being switched off.
- A fault must be acknowledged.
- Faults are displayed as follows:
  - Display in bit 3 of status word 1 (r0052)
  - Display on the converter via the LED RDY
  - Display in Startdrive
  - Display in the SINAMICS G120 Smart Access

The fault code and fault value describe the cause of the fault.

#### Fault buffer

| Fault code | Fault    | value    | Faul     | t time receiv | ved | Fault time | removed  |
|------------|----------|----------|----------|---------------|-----|------------|----------|
|            | 132      | float    | Days     | ms            |     | Days       | ms       |
| r0945[0]   | r0949[0] | r2133[0] | r2130[0] | r0948[0]      | Old | r2136[0]   | r2109[0] |
| [1]        | [1]      | [1]      | [1]      | [1]           |     | [1]        | [1]      |
| [2]        | [2]      | [2]      | [2]      | [2]           | _   | [2]        | [2]      |
| [3]        | [3]      | [3]      | [3]      | [3]           |     | [3]        | [3]      |
| [4]        | [4]      | [4]      | [4]      | [4]           |     | [4]        | [4]      |
| [5]        | [5]      | [5]      | [5]      | [5]           |     | [5]        | [5]      |
| [6]        | [6]      | [6]      | [6]      | [6]           |     | [6]        | [6]      |
| [7]        | [7]      | [7]      | [7]      | [7]           | New | [7]        | [7]      |

The converter saves incoming faults in the fault buffer. A fault includes a fault code, a fault value, and two fault times:

- Fault code: r0945
- Fault value: r0949 in fixed-point format "I32", r2133 in floating-point format "Float"
- Fault time received = r2130 + r0948
- Fault time removed = r2136 + r2109

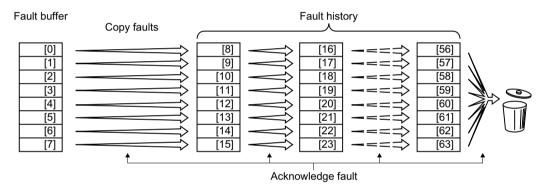
The converter takes its internal time calculation to save the fault times.

System runtime (Page 361)

Up to 8 faults can be saved in the fault buffer.

8.5 Faults, fault buffer and fault history

In the fault buffer, the faults are sorted according to "Fault time received". If the fault buffer is completely filled and an additional fault occurs, then the converter overwrites the values with Index [7].


#### Acknowledging a fault

To acknowledge a fault, you have the following options:

- PROFIdrive control word 1, bit 7 (r2090.7)
- Acknowledging via a digital input
- Acknowledging via a commissioning tool
- Switch off the converter power supply and switch on again

Faults detected during the converter-internal monitoring of hardware and firmware can be acknowledged only by switching the supply voltage off and on again. The list of fault codes and alarm codes includes the note on the limitations on the acknowledgment for the corresponding fault codes in the List manual.

#### Fault history



If at least one of the fault causes in the fault buffer has been removed and you acknowledge the faults, the following takes place:

- 1. The converter shifts the values previously saved in the fault history by eight indexes. The converter deletes the faults that were saved in the indexes [56 ... 63] before the acknowledgment.
- 2. The converter copies the contents of the fault buffer to the memory locations [8 ... 15] in the fault history.
- 3. The converter deletes the faults that have been removed from the fault buffer. The faults that have not been removed are now saved both in the fault buffer and in the fault history.
- 4. The converter writes the time of acknowledgment of the removed faults to "Fault time removed".

The "Fault time removed" of the faults that have not been removed retains the value = 0.

The fault history can contain up to 56 faults.

#### Deleting the fault history

To delete all faults from the fault history, set parameter p0952 = 0.

8.5 Faults, fault buffer and fault history

# Parameters

| Parameters of the fault buffer and the fault histo | ry |
|----------------------------------------------------|----|
|----------------------------------------------------|----|

| Parameter   | Description                              | Setting                                                                            |
|-------------|------------------------------------------|------------------------------------------------------------------------------------|
| r0945[0 63] | Fault code                               | Displays the numbers of the faults that have occurred.                             |
| r0948[0 63] | Fault time received in millisec-<br>onds | Displays the system runtime in milliseconds when the fault occurred.               |
| r0949[0 63] | Fault value                              | Displays additional information about the fault that occurred (as integer number). |
| p0952       | Fault cases counter                      | Number of fault cases that have occurred since the last acknowledgment.            |
|             |                                          | With p0952 = 0, you delete the fault buffer and the fault history.                 |
|             |                                          | Factory setting: 0                                                                 |
| r2109[0 63] | Fault time removed in milli-<br>seconds  | Displays the system runtime in milliseconds when the fault was removed.            |
| r2130[0 63] | Fault time received in days              | Displays the system runtime in days when the fault occurred.                       |
| r2131       | Actual fault code                        | Displays the code of the oldest active fault.                                      |
| r2133[0 63] | Fault value for float values             | Displays additional information about the fault that occurred for float values.    |
| r2136[0 63] | Fault time removed in days               | Displays the system runtime in days when the fault was removed.                    |

## Extended settings for faults

| Parameter                              | Description                                | Setting                                                                |
|----------------------------------------|--------------------------------------------|------------------------------------------------------------------------|
| You can change up to the acknowledgmer |                                            | suppress faults, modify the fault response, or modify                  |
| p2100[0 19]                            | Changing fault response,<br>fault number   | Selects the faults for which the fault response should be changed.     |
|                                        |                                            | Factory setting: 0                                                     |
| p2101[0 19]                            | Changing the fault reaction,               | Sets the fault reaction for the selected fault.                        |
|                                        | reaction                                   | 0: NONE                                                                |
|                                        |                                            | 1: OFF1                                                                |
|                                        |                                            | 2: OFF2                                                                |
|                                        |                                            | 3: OFF3                                                                |
|                                        |                                            | 5: STOP2                                                               |
|                                        |                                            | 6: Internal armature short-circuit / DC braking                        |
|                                        |                                            | Factory setting: 0                                                     |
| p2118[0 19]                            | Changing message type, mes-<br>sage number | Selects faults or alarms for which the message type should be changed. |
|                                        |                                            | Factory setting: 0                                                     |

| Parameter   | Description                                         | Setting                                                                                                |
|-------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| p2119[0 19] | Changing message type, type                         | Sets the message type for the selected fault or alarm.                                                 |
|             |                                                     | 1: Fault<br>2: Alarm<br>3: No message                                                                  |
|             |                                                     | Factory setting: 1                                                                                     |
| p2126[0 19] | Changing the acknowledg-<br>ment mode, fault number | Selects the faults for which the acknowledge mode is to be changed.                                    |
|             |                                                     | Factory setting: 0                                                                                     |
| p2127[0 19] | Changing the acknowledg-<br>ment mode               | Sets the acknowledgment type for the selected fault:                                                   |
|             |                                                     | 1: Acknowledgment only using POWER ON<br>2: Immediate acknowledgment after removing the<br>fault cause |
|             |                                                     | Factory setting: 1                                                                                     |

For more information about this function, see function diagram 8075 and parameter description in the List Manual.

# 8.6 List of alarms and faults

#### Overview

A message comprises a letter followed by the relevant number.

The letters have the following meaning:

| Α | Alarm code |
|---|------------|
| F | Fault code |

The expressions have the following meaning:

CU/Power Module/power unit All refer to an Electronic Module.

For example, replacing a CU, Power Module, or power unit means replacing an Electronic Module.

#### Important alarms and faults

| Number | Cause                    | Remedy                                         |
|--------|--------------------------|------------------------------------------------|
| F01000 | Software fault in CU     | Replace CU.                                    |
| F01001 | Floating Point Exception | Switch CU off and on again.                    |
| F01015 | Software fault in CU     | Upgrade firmware or contact technical support. |

| Number           | Cause                                                                                               | Remedy                                                                                                                                                     |
|------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F01018           | Power-up aborted more than once                                                                     | 1. Switch the module off and on again.                                                                                                                     |
|                  |                                                                                                     | 2. After this fault has been output, the module is booted with the factory settings.                                                                       |
|                  |                                                                                                     | 3. Recommission the converter.                                                                                                                             |
| A01028           | Configuration error                                                                                 | Explanation: Parameterization on the memory card has been created with a different type of module (article number, MLFB)                                   |
|                  |                                                                                                     | Check the module parameters and recommission if necessary.                                                                                                 |
| F01033           | Unit switchover: Reference parame-<br>ter value invalid                                             | Set the value of the reference parameter not equal to 0.0 (p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004).                                 |
| F01034           | Unit switchover: Calculation of the                                                                 | Select the value of the reference parameter so that the parameters involved                                                                                |
|                  | parameter values after reference value change unsuccessful                                          | can be calculated in the per unit notation (p0304, p0305, p0310, p0596, p2000, p2001, p2002, p2003, r2004).                                                |
| F01040           | Parameters must be saved                                                                            | Save parameters (p0971).<br>Switch CU off and on again.                                                                                                    |
| F01044           | Loading of memory data card defec-                                                                  | Replace memory card or CU.                                                                                                                                 |
| 101044           | tive                                                                                                |                                                                                                                                                            |
| A01101           | Memory card not available                                                                           | Insert a memory card or disable the warning A01101.                                                                                                        |
|                  |                                                                                                     | Activating message for a memory card that is not inserted (Page 345)                                                                                       |
| F01105           | CU: Insufficient memory                                                                             | Reduce number of data records.                                                                                                                             |
| F01122           | Frequency at the probe input too high                                                               | Reduce the frequency of the pulses at the probe input.                                                                                                     |
| F01205           | CU: Time slice overflow                                                                             | Contact technical support.                                                                                                                                 |
| F01250           | CU hardware fault                                                                                   | Replace CU.                                                                                                                                                |
| F01512           | An attempt has been made to estab-<br>lish an conversion factor for scaling<br>which is not present | Create scaling or check transfer value.                                                                                                                    |
| A01590           | Motor maintenance interval lapsed                                                                   | Carry out maintenance and reset the maintenance interval (p0651).                                                                                          |
| F01662           | CU hardware fault                                                                                   | Switch CU off and on again, upgrade firmware, or contact technical support.                                                                                |
| A01910<br>F01910 | Setpoint timeout                                                                                    | The alarm is generated when $p2040 \neq 0$ ms and one of the following causes is present:                                                                  |
|                  |                                                                                                     | The bus connection is interrupted                                                                                                                          |
|                  |                                                                                                     | Communications error (CRC, parity bit, logical error)                                                                                                      |
|                  |                                                                                                     | An excessively low value for the fieldbus monitoring time (p2040)                                                                                          |
| F03505           | Analog input, wire break                                                                            | Check the connection to the signal source for interrupts.<br>Check the level of the signal supplied.                                                       |
| 100500           |                                                                                                     | The input current measured by the analog input can be read out in r0752.                                                                                   |
| A03560           | Local/Remote keyswitch in the "Off" position                                                        | Set the keyswitch to another position (e.g. "Local" or "Remote").                                                                                          |
|                  |                                                                                                     | Note: Active faults are acknowledged if the keyswitch is turned from the "Off" position to "Local" or "Remote".                                            |
| A03561           | A03561(0): Local drive control                                                                      | The Local/Remote keyswitch is set to "Local" and the drive is controlled lo-<br>cally. If required, set the keyswitch to "Remote" and control it remotely. |
|                  | A03561(1): Remote drive control                                                                     | Set the keyswitch to "Remote" position for remote control                                                                                                  |
|                  | (e.g. via Startdrive) failed because                                                                | Deactivate remote control for local control                                                                                                                |
|                  | the Local/Remote keyswitch is set to<br>"Local"                                                     | Note: Active faults are acknowledged if the keyswitch is turned from the "Off" position to "Local" or "Remote".                                            |

| Number                                         | Cause                                                | Remedy                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A05000<br>A05001<br>A05002<br>A05004<br>A05006 | Power Module overtemperature                         | Check the following:<br>- Is the ambient temperature within the defined limit values?<br>- Are the load conditions and duty cycle configured accordingly?<br>- Has the cooling failed?                                                                                                                                                                                                                                  |
| F06310                                         | Supply voltage (p0210) incorrectly parameterized     | Check the parameterized supply voltage and if required change (p0210).<br>Check the line voltage.                                                                                                                                                                                                                                                                                                                       |
| F07011                                         | Motor overtemperature                                | Reduce the motor load.<br>Check ambient temperature.<br>Check the wiring and connection of the sensor.                                                                                                                                                                                                                                                                                                                  |
| A07012                                         | I2t Motor Module overtemperature                     | Check and if necessary reduce the motor load.<br>Check the motor's ambient temperature.<br>Check thermal time constant p0611.<br>Check overtemperature fault threshold p0605.                                                                                                                                                                                                                                           |
| A07015                                         | Motor temperature sensor alarm                       | Check that the sensor is connected correctly.<br>Check the parameter assignment (p0601).                                                                                                                                                                                                                                                                                                                                |
| F07016                                         | Motor temperature sensor fault                       | Make sure that the sensor is connected correctly.<br>Check the parameterization (p0601).<br>Deactivate the temperature sensor fault (p0607 = 0).                                                                                                                                                                                                                                                                        |
| F07086<br>F07088                               | Unit switchover: Parameter limit vi-<br>olation      | Check the adapted parameter values and if required correct.                                                                                                                                                                                                                                                                                                                                                             |
| F07320                                         | Automatic restart aborted                            | Increase the number of restart attempts (p1211). The actual number of start<br>attempts is shown in r1214.<br>Increase the wait time in p1212 and/or monitoring time in p1213.<br>Connect an ON command (p0840).<br>Increase the monitoring time of the power unit or switch off (p0857).<br>Reduce the wait time for resetting the fault counter p1213[1] so that fewer<br>faults are registered in the time interval. |
| A07321                                         | Automatic restart active                             | Explanation: The automatic restart (AR) is active. During voltage recovery and/or when remedying the causes of pending faults, the drive is automatically switched back on.                                                                                                                                                                                                                                             |
| F07330                                         | Search current measured too low                      | Increase search current (p1202), check motor connection.                                                                                                                                                                                                                                                                                                                                                                |
| A07352                                         | Stop sensor not plausible                            | <ul><li>Check the BICO interconnections for the stop sensors.</li><li>Check the sensors.</li></ul>                                                                                                                                                                                                                                                                                                                      |
| A07353                                         | DC quantity control deactivated                      | Optimize the DC quantity controller (Kp, Tn, bandwidth, PT2 filter).                                                                                                                                                                                                                                                                                                                                                    |
| A07400                                         | V <sub>DC_max</sub> controller active                | <ul> <li>If it is not desirable that the controller intervenes:</li> <li>Increase the ramp-down times.</li> <li>Deactivate the V<sub>DC_max</sub> controller (p1240 = 0 for vector control, p1280 = 0 for U/f control).</li> </ul>                                                                                                                                                                                      |
| A07409                                         | U/f control, current limiting control-<br>ler active | <ul> <li>The alarm automatically disappears after one of the following measures:</li> <li>Increase the current limit (p0640).</li> <li>Reduce the load.</li> <li>Slow down the up ramp for the setpoint speed.</li> </ul>                                                                                                                                                                                               |
| F07426                                         | Technology controller actual value<br>limited        | <ul><li>Adapt the limits to the signal level (p2267, p2268).</li><li>Check the actual value scaling (p2264).</li></ul>                                                                                                                                                                                                                                                                                                  |

| Number                     | Cause                         | Remedy                                                                                                             |
|----------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------|
| F07801                     | Motor overcurrent             | Check current limits (p0640).                                                                                      |
|                            |                               | Vector control: Check current controller (p1715, p1717).                                                           |
|                            |                               | U/f control: Check the current limiting controller (p1340 p1346).                                                  |
|                            |                               | Increase acceleration ramp (p1120) or reduce load.                                                                 |
|                            |                               | Check motor and motor cables for short circuit and ground fault.                                                   |
|                            |                               | Check motor for star-delta connection and rating plate parameterization.                                           |
|                            |                               | Check power unit / motor combination.                                                                              |
|                            |                               | Select flying restart function (p1200) if switched to rotating motor.                                              |
| A07805                     | Power unit overload I2t       | Reduce the continuous load.                                                                                        |
|                            |                               | • Adapt the load cycle.                                                                                            |
|                            |                               | • Check the assignment of rated currents of the motor and power unit.                                              |
| F07807                     | Short circuit detected        | • Check the converter connection on the motor side for any phase-phase short-circuit.                              |
|                            |                               | • Rule out that line and motor cables have been interchanged.                                                      |
| A07850                     | External alarm 1 3            | The signal for "external alarm 1" has been triggered.                                                              |
| A07851<br>A07852           |                               | Parameters p2112, p2116 and p2117 determine the signal sources for the external alarm 1 3.                         |
|                            |                               | Remedy: Remove the causes of these alarms.                                                                         |
| F07860<br>F07861<br>F07862 | External fault 1 3            | Remove the external causes for this fault.                                                                         |
| F07900                     | Motor blocked                 | Check that the motor can run freely.                                                                               |
|                            |                               | Check the torque limits (r1538 and r1539).                                                                         |
|                            |                               | Check the parameters of the "Motor blocked" message (p2175, p2177).                                                |
| F07901                     | Motor overspeed               | Activate precontrol of the speed limiting controller (p1401 bit $7 = 1$ ).                                         |
|                            |                               | Increase hysteresis for overspeed signal p2162.                                                                    |
| F07902                     | Motor stalled                 | Check whether the motor data has been parameterized correctly and per-<br>form motor identification.               |
|                            |                               | Check the current limits (p0640, r0067, r0289). If the current limits are too low, the drive cannot be magnetized. |
|                            |                               | Check whether motor cables are disconnected during operation.                                                      |
| A07903                     | Motor speed deviation         | Increase p2163 and/or p2166.                                                                                       |
|                            |                               | Increase the torque, current and power limits.                                                                     |
| A07910                     | Motor overtemperature         | Check the motor load.                                                                                              |
|                            |                               | Check the motor's ambient temperature.                                                                             |
|                            |                               | Check the KTY84 or Pt1000 sensor.                                                                                  |
|                            |                               | Check the overtemperatures of the thermal model (p0626 p0628).                                                     |
| A07920                     | Torque/speed too low          | The torque deviates from the torque/speed envelope curve.                                                          |
| A07921                     | Torque/speed too high         | Check the connection between the motor and the load.                                                               |
| A07922                     | Torque/speed out of tolerance | • Adapt the parameterization corresponding to the load.                                                            |
| F07923                     | Torque/speed too low          | Check the connection between the motor and the load.                                                               |
| F07924                     | Torque/speed too high         | • Adapt the parameterization corresponding to the load.                                                            |
| A07927                     | DC braking active             | Not required                                                                                                       |
| A07980                     | Rotary measurement activated  | Not required                                                                                                       |

| Number | Cause                                                         | Remedy                                                                                                                                |
|--------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| A07981 | No enabling for rotary measurement                            | Acknowledge pending faults.                                                                                                           |
|        |                                                               | Establish missing enables (see r00002, r0046).                                                                                        |
| A07991 | Motor data identification activated                           | Switch on the motor and identify the motor data.                                                                                      |
| F08501 | Setpoint timeout                                              | Check the PROFINET connection.                                                                                                        |
|        |                                                               | • Set the controller to RUN mode.                                                                                                     |
|        |                                                               | • If the error occurs repeatedly, check the set monitoring time p2044.                                                                |
| F08502 | Monitoring time sign-of-life expired                          | Check the PROFINET connection.                                                                                                        |
| A08511 | Receive configuration data not valid                          | Check the PROFINET configuration                                                                                                      |
| A08526 | No cyclic connection                                          | Activate the controller with cyclic operation.                                                                                        |
|        |                                                               | <ul> <li>Check the parameters "Name of Station" and "IP of Station" (r61000,<br/>r61001).</li> </ul>                                  |
| A08565 | Consistency error affecting adjusta-                          | Check the following:                                                                                                                  |
|        | ble parameters                                                | • IP address, subnet mask or default gateway is not correct.                                                                          |
|        |                                                               | • IP address or station name used twice in the network.                                                                               |
|        |                                                               | Station name contains invalid characters.                                                                                             |
| F13100 | Know-how protection: Copy protec-<br>tion error               | The know-how protection and the copy protection for the memory card are active. An error occurred during checking of the memory card. |
|        |                                                               | • Insert a suitable memory card and switch the converter supply voltage temporarily off and then on again (POWER ON).                 |
|        |                                                               | Deactivate the copy protection (p7765).                                                                                               |
| F13101 | Know-how protection: Copy protec-<br>tion cannot be activated | Insert a valid memory card.                                                                                                           |
| F30001 | Overcurrent                                                   | Check the following:                                                                                                                  |
|        |                                                               | Motor data, if required, carry out commissioning                                                                                      |
|        |                                                               | • Motor connection method (Y / $\Delta$ )                                                                                             |
|        |                                                               | • U/f operation: Assignment of rated currents of motor and Power Module                                                               |
|        |                                                               | Line quality                                                                                                                          |
|        |                                                               | Power cable connections                                                                                                               |
|        |                                                               | Power cables for short-circuit or ground fault                                                                                        |
|        |                                                               | Power cable length                                                                                                                    |
|        |                                                               | Line phases                                                                                                                           |
|        |                                                               | If this doesn't help:                                                                                                                 |
|        |                                                               | Ulf operation: Increase the acceleration ramp                                                                                         |
|        |                                                               | Reduce the load                                                                                                                       |
|        |                                                               | Replace the power unit                                                                                                                |
| F30002 | DC-link voltage overvoltage                                   | Increase the ramp-down time (p1121).                                                                                                  |
|        |                                                               | Set the rounding times (p1130, p1136).                                                                                                |
|        |                                                               | Activate the DC link voltage controller (p1240, p1280).                                                                               |
|        |                                                               | Check the line voltage (p0210).                                                                                                       |
|        |                                                               | Check the line phases.                                                                                                                |
| F30003 | DC-link voltage undervoltage                                  | Check the line voltage (p0210).                                                                                                       |

| Number                           | Cause                                    | Remedy                                                                            |
|----------------------------------|------------------------------------------|-----------------------------------------------------------------------------------|
| F30004 Converter overtemperature |                                          | Check whether the converter fan is running.                                       |
|                                  |                                          | Check whether the ambient temperature is in the permissible range.                |
|                                  |                                          | Check whether the motor is overloaded.                                            |
|                                  |                                          | Reduce the pulse frequency.                                                       |
| F30005                           | I2t converter overload                   | Check the rated currents of the motor and Power Module.                           |
|                                  |                                          | Reduce current limit p0640.                                                       |
|                                  |                                          | When operating with U/f characteristic: Reduce p1341.                             |
| F30011                           | Line phase failure                       | Check the converter's input fuses.                                                |
|                                  |                                          | Check the line cables.                                                            |
| F30015                           | Motor cable phase failure                | Check the motor cables.                                                           |
|                                  |                                          | Increase the ramp-up or ramp-down time (p1120).                                   |
| F30021                           | Ground fault                             | Check the power cable connections.                                                |
|                                  |                                          | Check the motor.                                                                  |
|                                  |                                          | Check the current transformer.                                                    |
|                                  |                                          | • Check the cables and contacts of the brake connection (a wire might be broken). |
| F30022                           | Power Module: Monitoring U <sub>CE</sub> | Check or replace the Power Module.                                                |
| F30027                           | Time monitoring for DC link pre-         | Check the supply voltage at the input terminals.                                  |
|                                  | charging                                 | Check the line voltage setting (p0210).                                           |
| F30035                           | Overtemperature, intake air              | Check whether the fan is running.                                                 |
| F30036                           | Overtemperature, inside area             | Check the fan filter elements.                                                    |
|                                  |                                          | • Check whether the ambient temperature is in the permissible range.              |
| F30037                           | Rectifier overtemperature                | See F30035 and, in addition:                                                      |
|                                  |                                          | Check the motor load.                                                             |
|                                  |                                          | Check the line phases                                                             |
| F30052                           | Incorrect Power Module data              | Replace Power Module or upgrade CU firmware.                                      |
| A30502                           | DC link overvoltage                      | Check the unit supply voltage (p0210).                                            |
| F30662                           | CU hardware fault                        | Switch CU off and on again, upgrade firmware, or contact technical support.       |
| F30664                           | CU power up aborted                      | Switch CU off and on again, upgrade firmware, or contact technical support.       |
| F30850                           | Software fault in Power Module           | Replace Power Module or contact technical support.                                |
| A30920                           | Temperature sensor fault                 | Check that the sensor is connected correctly.                                     |

For details, please refer to the List Manual.

# **Corrective maintenance**

# 9.1 Spare parts compatibility

## Continuous development within the scope of product maintenance

Drive components are being continuously developed within the scope of product maintenance. Product maintenance includes, for example, measures to increase the ruggedness or hardware changes which become necessary as components are discontinued.

These further developments are "spare parts-compatible" and do not change the article number.

In the scope of such spare parts-compatible ongoing development, plug connector or connection positions are sometimes slightly modified. This does not cause any problems when the components are properly used. Take this fact into consideration in special installation situations (e.g. allow sufficient reserve regarding the cable length).



# 

#### Fire or electric shock due to defective components

If an overcurrent protection device is triggered, the converter may be defective. A defective converter can cause a fire or electric shock.

• Have the converter and the overcurrent protection device checked and replaced (if damaged) by a specialist.

# Repair



# n warning

#### Fire or electric shock due to improper repair

Improper repair of the converter may cause malfunctions or result in consequential damage such as fire or electric shock.

- Only commission the following persons to repair the converter:
  - Siemens customer service
  - A repair center that has been authorized by Siemens
  - Specialist personnel who are thoroughly acquainted with all the warnings and operating procedures contained in this manual.
- Only use original spare parts when carrying out repairs.

## **Recycling and disposal**



For environmentally-friendly recycling and disposal of your old device, please contact a company certified for the disposal of waste electrical and electronic equipment, and dispose of the old device as prescribed in the respective country of use.

# 9.2 Replacing the converter

For the G115D motor-mounted converter, you can replace either the Electronic Module or the complete drive (geared motor + G115D motor-mounted converter).

For the G115D wall-mounted converter, you can replace either the Electronic Module or the complete converter.

In most cases, you only need to replace the Electronic Module instead of the complete converter. For more information, see Chapter "Replacing the Electronic Module (Page 382)".

# 9.2.1 Replacing the converter hardware

You may only replace a converter with a new one under the preconditions given later in this chapter. After the replacement, you must transfer the settings of the replaced converter to the new converter.

#### Precondition

The following two prerequisites apply for replacing the converter:

- The new converter's firmware version is equal to or later than the replaced converter.
- The new converter must have the same frame size and the same or higher power rating as those of the replaced converter.

# **WARNING**

#### Unexpected machine motion caused by incorrect converter type

Replacing converters of different types can result in incomplete or incorrect/inappropriate converter settings. As a consequence, unexpected machine motion, e.g. speed oscillation, overspeed or incorrect direction of rotation. Unexpected machine motion can result in death, injury or material damage.

• In all cases not permitted according to the above requirement, you must recommission the drive after replacing the converter.

# \Lambda warning

#### Unexpected machine motion caused by inappropriate/incorrect converter settings

Missing or incorrect converter settings can lead to unexpected operating states or machine movements, e.g. a non-functioning EMERGENCY STOP or an incorrect direction of rotation. As a consequence, machine components or devices can become damaged or death or injury may result.

- If possible, back up the settings of the converter to be replaced by uploading them to an external storage medium, e.g. a memory card.
- Transfer the settings of the converter to be replaced by downloading them to the new converter.
- If you do not have a backup of the converter settings, commission the new converter as completely new converter.
- Check that the new converter works properly.

#### Procedure

1. Switch off all power supplies (line supply and external 24 V power supply) to the converter.



# MARNING 🕺

#### Electric shock as a result of a residual charge in power components

After the power supply has been switched off, it takes up to 5 min. until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.

- Check the voltage at the converter connections, before removing the connection cables.
- 2. Remove the connecting cables of the converter.
- 3. Remove the defective converter and install the new converter.
- 4. Adjust the electromechanical potentiometers to make sure the scaling is set as same as the replaced converter.

Electromechanical potentiometer (Page 254)

5. Connect all of the cables to the converter.

# NOTICE

#### Damage caused by interchanging the motor cables

The direction in which the motor rotates switches if you exchange the two phases of the motor line. An incorrect direction of rotation can lead to damage in the machine or system.

• Connect the three phases of the motor lines in the right order.

- 6. Switch on all power supplies (line supply and external 24 V power supply) to the converter. Set the new converter to suit the application:
  - If the settings of the replaced converter are backed up on an external storage medium, transfer the settings to the new converter.
     Memory card → converter (Page 343)
     PG/PC → converter (Page 347)
  - If there is no data backup of the replaced converter, recommission the converter.
     Commissioning (Page 111)
- For converters with safety functions enabled, perform a reduced acceptance test.
   Reduced acceptance test after component replacement and firmware change (Page 397)

You have successfully replaced the converter.

# 9.2.2 Replacing a converter with active know-how protection

#### 9.2.2.1 Replacing a converter with know-how protection without copy protection

In the case of know-how protection without copy protection, the converter settings can be transferred to another converter using a memory card.

Converter  $\rightarrow$  Memory card (Page 341)

Memory card  $\rightarrow$  converter (Page 343)

#### 9.2.2.2 Replacing a converter with know-how protection with copy protection

The know-how protection with copy protection prevents the duplication of the converter settings.

If the converter settings can neither be copied nor forwarded, a recommissioning is required after converter replacement.

To avoid the recommissioning, there are two options for replacing the converter.

#### Precondition

- The end customer must use a Siemens memory card
- The machine manufacturer must have an identical prototype machine that it uses as sample

#### Procedure

#### Option 1: The machine manufacturer only knows the serial number of the new converter

- 1. The end customer provides the machine manufacturer with the following information:
  - For which machine must the converter be replaced?
  - What is the serial number (r7758) of the new converter?
- 2. The machine manufacturer performs the following steps online on the prototype machine:
  - Deactivating know-how protection
     Activating and deactivating know-how protection (Page 354)
  - Enter the serial number of the new converter in p7759.
  - Enter the serial number of the inserted memory card as reference serial number in p7769.
  - Activate know-how protection with copy protection. "Copy RAM to ROM" must be activated.

Activating and deactivating know-how protection (Page 354)

- Write the configuration with p0971 = 1 to the memory card.
- Send the memory card to the end customer.
- 3. The end customer inserts the memory card and switches on the power supply of the converter.
- 4. When powering up, the converter checks the serial numbers of the card and when there is a match, the converter goes into the "ready to start" state. If the numbers do not match, then the converter signals fault F13100 (no valid memory card).

You have transferred the converter settings to the new converter.  $\hfill\square$ 

# Option 2: The machine manufacturer knows the serial number of the new converter and the serial number of the memory card

- 1. The end customer provides the machine manufacturer with the following information:
  - For which machine must the converter be replaced?
  - What is the serial number (r7758) of the new converter?
  - What is the serial number of the memory card?
- 2. The machine manufacturer performs the following steps online on the prototype machine:
  - Deactivating know-how protection
     Activating and deactivating know-how protection (Page 354)
  - Enter the serial number of the new converter in p7759.
  - Enter the serial number of the customer's memory card as reference serial number in p7769.
  - Activate know-how protection with copy protection. "Copy RAM to ROM" must be activated.

Activating and deactivating know-how protection (Page 354)

- Write the configuration with p0971 = 1 to the memory card.
- Copy the encrypted project from the card to the associated PC.
- Send the encrypted project to the end customer, e.g. via e-mail.
- 3. The end customer copies the project to the Siemens memory card that belongs to the machine, inserts it in the converter and switches on the power supply of the converter.
- 4. When powering up, the converter checks the serial numbers of the card and when there is a match, the converter goes into the "ready to start" state. If the numbers do not match, then the converter signals fault F13100 (no valid memory card).

You have transferred the converter settings to the new converter.

# 9.3 Replacing the spare parts

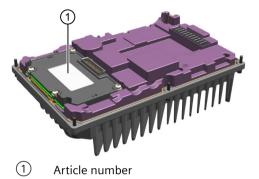
For more information on the spare parts of the geared motors, refer to the following chapter:

Spare parts list, motor (Page 476)

Replacement part lists gearbox (Page 569)

# 9.3.1 Spare parts overview

| Spare parts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Motor<br>Mounted | Wall<br>Mounted | Frame<br>size     | Article number     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-------------------|--------------------|
| Electronic Module (without fan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Contraction of the second seco | ✓<br>n.a.        |                 | FSA/FSB<br>FSC    | 6SL3500-0XE5A0     |
| Replacement fan with cover<br>caps and screws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.a.             | •               | FSB (4<br>kW)/FSC | 6SL3500-0XF51-0AA0 |
| Spare part kit for G115D Motor<br>Mounted, consisting of 1 set of<br>SD card cover, 1 set of commis-<br>sioning cover, 1 set of main gas-<br>kets <sup>1)</sup> , 1 set of blanking caps<br>and head screws                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                | n.a.            | FSA/FSB           | 6SL3500-0XK50-0AA0 |
| Spare part kit for G115D Wall<br>Mounted, consisting of 1 set of<br>blanking cover, 1 set of SD card<br>cover, 1 set of commissioning<br>cover, 1 set of main gaskets <sup>1)</sup> , 1<br>set of blanking caps and head<br>screws, 1 set of LRC gasket                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n.a.             | •               | FSA/FSB<br>/FSC   | 6SL3500-0XK51-0AA0 |
| <sup>1)</sup> The two main gaskets are for the two main gaskets are for the two main gaskets are for the two mains are two mains are the two mains are two mains ar | ne Wiring Modules of FSA and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FSB/FSC resp     | ectively.       |                   | •                  |


# **Electronic Module**

# Ordering data

| Frame size | Rated power | Article number |   |   |   |  |    |
|------------|-------------|----------------|---|---|---|--|----|
| FSA        | 0.37 kW     | 6SL3500-0XE5   | 0 | - | 3 |  | AO |
|            | 0.55 kW     | 6SL3500-0XE5   | 0 | - | 5 |  | A0 |
|            | 0.75 kW     | 6SL3500-0XE5   | 0 | - | 7 |  | AO |
|            | 1.1 kW      | 6SL3500-0XE5   | 1 | - | 1 |  | AO |
|            | 1.5 kW      | 6SL3500-0XE5   | 1 | - | 5 |  | AO |
| FSB        | 2.2 kW      | 6SL3500-0XE5   | 2 | - | 2 |  | AO |
|            | 3 kW        | 6SL3500-0XE5   | 3 | - | 0 |  | AO |
|            | 4 kW        | 6SL3500-0XE5   | 4 | - | 0 |  | AO |

| Frame size            | Rated power | Article number |   |   |    |    |    |
|-----------------------|-------------|----------------|---|---|----|----|----|
| FSC                   | 5.5 kW      | 6SL3500-0XE5   | 5 | - | 5  |    | A0 |
|                       | 7.5 kW      | 6SL3500-0XE5   | 7 | - | 5  |    | A0 |
| AS-Interface          |             |                |   |   | Α  | A0 |    |
| I/O Control           |             |                |   |   | В  | A0 |    |
| PROFINET, EtherNet/IP |             |                |   | F | A0 |    |    |

You can find the article number from the label on the back side of the Electronic Module.



# 9.3.2 Replacing the Electronic Module



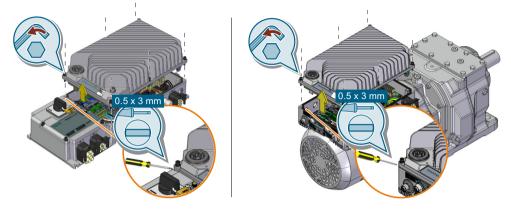
# \Lambda warning

#### Electric shock as a result of a residual charge in power components

After the power supply has been switched off, it takes up to 5 minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level. Therefore, touching the converter immediately after powering off can result in electric shock due to residual charge in the power components.

• Check the voltage at the converter connections before you replace the Electronic Module.

# Precondition

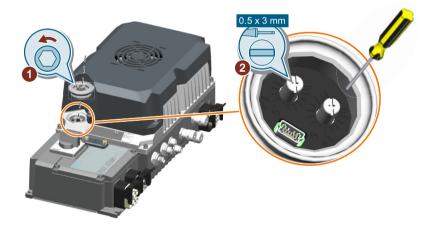

- You have backed up the settings of the converter on an external storage medium.
   Converter → Memory card (Page 341)
   Converter → PG/PC (Page 346)
- The new Electronic Module must have the same frame size and the same or higher power rating as those of the Electronic Module that is necessary for replacement.

#### Procedure

- 1. Switch off all power supplies (line supply and external 24 V power supply) to the converter.
- 2. Wait 5 minutes to allow the converter to discharge and check that no voltage is present at the converter connections.

3. Release the retaining screws (6 x M4) for the Electronic Module by using a 3 mm allen key, and then remove the module.

Note: If you cannot easily remove the Electronic Module, use a flat-bit screwdriver to lift one corner and remove the module.




4. Install the new Electronic Module and tighten it with a tightening torque of 2.5 Nm (22.1 lbf.in).

Note: For G115D wall-mounted converter FSB (4 kW)/FSC, you need to remove the fan unit from the old Electronic Module, and then to reinstall the fan unit on the new Electronic Module.

Replacing the fan unit (Page 384)

5. Remove the commissioning cover by using an S12 hex nut driver ①. Use a flat-bit screwdriver ② to adjust the value settings on the two electromechanical potentiometers to be identical with the settings for the Electronic Module that was replaced. Reattach the commissioning cover with a tightening torque of 2.5 Nm (22.1 lbf.in)



- 6. Switch on all power supplies (line supply and external 24 V power supply) to the converter.
- 7. Transfer the backed-up converter settings from the external storage medium to the converter with the new Electronic Module installed.

Memory card  $\rightarrow$  converter (Page 343) PG/PC  $\rightarrow$  converter (Page 347)

#### Note

If you had not done data backup on an external storage medium before, recommission the converter. For more information, see the following chapter:

Commissioning (Page 111)

You have replaced the Electronic Module.

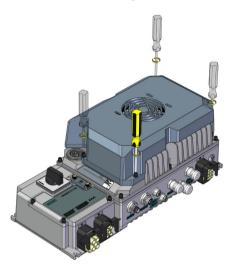
#### **Further information**

If the new Electronic Module has been stored for more than one year, you have to reform the DC link capacitors. Non-formed DC link capacitors can damage the converter in operation. For more information about how to form the DC link capacitors, see the following chapter:

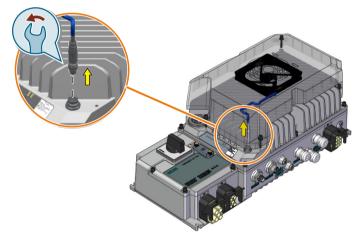
Forming DC link capacitors (Page 61)

## 9.3.3 Replacing the fan unit

The G115D wall-mounted converter FSB (4 kW)/FSC is integrated with a fan unit.

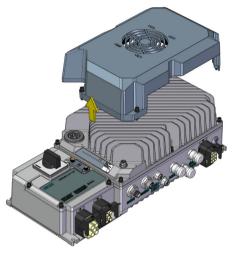

The average service life of the fan is 40,000 hours. In practice, however, the service life may deviate from this value. The dusty environment, in particular, can block up the fan. Make sure that you replace the defective fan in time to ensure the proper operation of the converter

## Precondition


• You have switched off the converter power supply before replacing the fan unit.

## Procedure

- 1. Switch off all power supplies (line supply and external 24 V power supply) to the converter.
- 2. Release the 4 retaining screws on the fan cover.




3. Release the M8 connector on the Electronic Module.



9.4 Repair switch

4. Remove the fan unit from the converter.



5. Install the new fan unit and fix it with a tightening torque of 2.5 Nm (22.1 lbf.in).

You have replaced the fan unit.

# 9.4 Repair switch

#### Overview

The G115D wall-mounted converter is optionally available with an integrated repair switch. The repair switch allows the converter to be totally isolated from the mains. This means that the mains power to the converter is terminated and the converter cannot start or stop the motor; however, the 400 V AC and/or 24 V DC power supplies to the daisy chained converters are still maintained.



# \Lambda WARNING

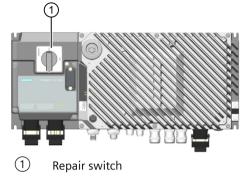
#### Electric shock as a result of a residual charge in power components

After the power supply has been switched off, it takes up to five minutes until the capacitors in the converter have discharged so that the residual charge is at a non-hazardous level.

• Wait at least five minutes to allow the converter to discharge after switching the repair switch off before carrying out any maintenance work.

#### Note

The integrated repair switch in the G115D is listed as a manual motor controller suitable as motor disconnect.


Although the activation of the switch while the motor is running is allowed, in order to provide maximum protection to the converter, Siemens recommends that you stop the motor by other means and wait until the motor reaches a full stop before activating the switch.

9.5 Local/Remote control panel

#### Note

For converters integrated with both the repair switch and the 24 V PSU, the 24 V DC power supply to the converter is maintained when you switch off the 400 V AC supply via the repair switch.

The location of the repair switch on the wall-mounted converter is shown in the figure below.



#### **Function description**

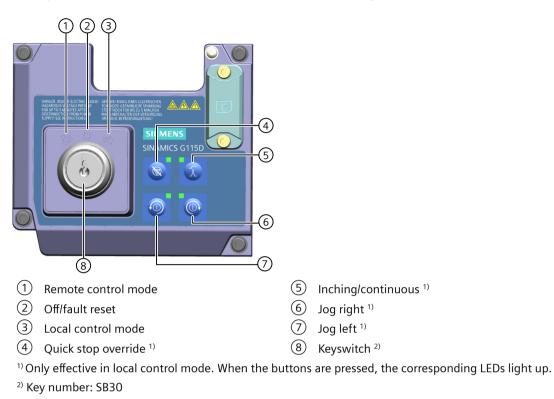
When the repair switch is set to OFF, the mains power to the converter is terminated. The converter pulses are disabled and the motor cannot be started or react in anyway to commands from the converter or the controlling PLC. In this case, F07802 will be generated with ON command.

With parameter r8559.12, you can read the feedback signal of the repair switch:

- r8559.12 = 1, repair switch is switched to OFF
- r8559.12 = 0, repair switch is switched to ON (mains on or no repair switch installed)

The repair switch can be padlocked into position so that once it has been switched off, it cannot be accidentally switched on.

The motor can be repaired or replaced as required. Once the repair has been completed the repair switch can be unlocked and switched on - the motor is then directly under the command of the converter or the controlling PLC.


It should be noted that although the motor is isolated, communications and commands can be passed between the controlling PLC and the converter, for example, parameters can be changed.

# 9.5 Local/Remote control panel

#### Overview

The G115D wall-mounted converter is optionally available with an integrated Local/Remote control (LRC) panel. The LRC panel has been designed to enable the user to take control of the converter and motor from the automated system. In the local control mode, the user can precisely control the movement of the motor, for example, starting, stopping and inching the motor when fitting a new belt to a conveyor section.

#### 9.5 Local/Remote control panel



The layout of the local/remote control panel is shown in the figure below.

# **Function description**

The functions of the various buttons and keyswitch positions are given in the table below.

| Key/button              | Description                                                                                                                                                                                                                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Remote                  | If the converter is controlled via macro settings, Startdrive or G120 Smart Access, the key must be switched to the remote position.                                                                                                |
| Off/fault reset         | When the key is switched to the off position, the converter will be in standby with pulses disabled and will ignore any command source inputs. As the keyswitch is moved from this position a fault reset will occur.               |
| Local                   | When the key is switched to the local position, the converter ignores the command source and setpoint source from macro settings, Startdrive or G120 Smart Access. The converter only reacts to the local buttons on the LRC panel. |
| Quick stop override     | The quick stop function enables the converter to react to sensors on a conveyor segment when items move past the sensor. The quick stop override button disables the converters reaction to the sensor signals.                     |
| Inching/continu-<br>ous | This button toggles between inching and continuous movement of the motor. The movement of the motor is determined by the values set in parameters p1058 and p1059.                                                                  |
|                         | <b>Inching:</b> Press and hold the Jog button to run the motor, and release the button to stop the motor.                                                                                                                           |
|                         | <b>Continuous:</b> Press the Jog button to run the motor, and press the Jog button again to stop the motor.                                                                                                                         |

| Key/button | Description                                                             |
|------------|-------------------------------------------------------------------------|
| Jog left   | Pressing the Jog left button will move the conveyor belt to the left.   |
| Jog right  | Pressing the Jog right button will move the conveyor belt to the right. |

#### Parameters

With parameter r8559, you can read the feedback signal of the LRC panel status:

| Parameter  | Description                                                                                                                  |
|------------|------------------------------------------------------------------------------------------------------------------------------|
| r8559[012] | Display and BICO output for the status of local/remote control panel.                                                        |
|            | • Bit 0: 1 = LRC is available. The LRC panel is connected or the blanking cover is fitted.                                   |
|            | • Bit 1: 1 = LRC is switched to OFF.                                                                                         |
|            | • Bit 2: 1 = Remote control is active.                                                                                       |
|            | • Bit 3: 1 = Local control is active.                                                                                        |
|            | • Blt 4: 1 = Quick stop override is active.                                                                                  |
|            | • Bit 5: 1 = Inching/continuous motion is active.                                                                            |
|            | • Bit 6: 1 = Jog left is active                                                                                              |
|            | • Bit 7: 1 = Jog right is active                                                                                             |
|            | • Bit 8: 1 = LRC is not available. The LRC panel or the blanking cover is removed.                                           |
|            | • Bit 9: Reserved                                                                                                            |
|            | • Bit 10: 1 = LRC not detected. Unknown status is detected.                                                                  |
|            | • Bit 11: 1 = Drive is inhibited. The drive is inhibited with bit 8=1 or bit10=1.                                            |
|            | • Bit 12: 0 = repair switch is switched to ON; 1 = repair switch is switched to OFF (mains on or no repair switch installed) |

# **Further information**

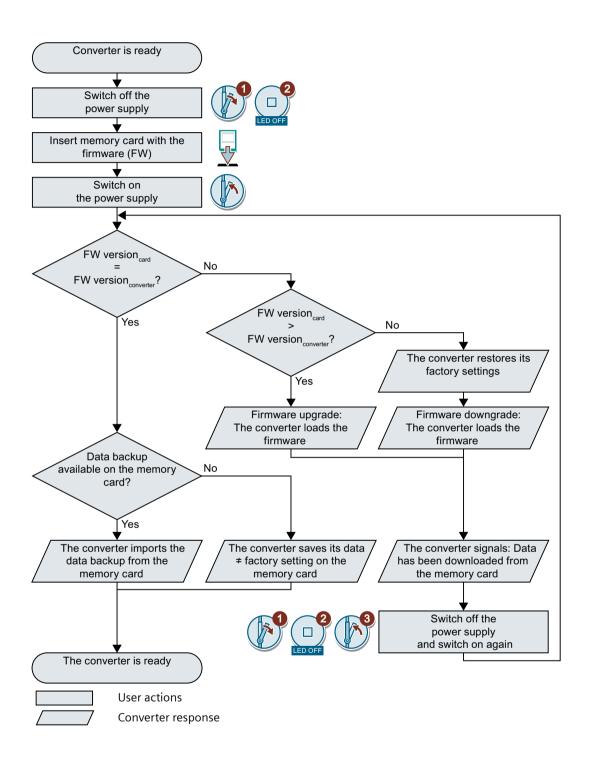
For more information on the "JOG" function, refer to the following chapter:

Jogging (Page 190)

For more information on LRC functions, refer to function diagram 2507 of List Manual:

Overview of the manuals (Page 592)

# 9.6 Firmware upgrade and downgrade


#### NOTICE

#### Damage to converter due to interruption of firmware upgrade or downgrade

The converter can be damaged if the power supply is interrupted during firmware upgrade or downgrade.

• Ensure that the power supply is stable before starting the firmware upgrade or downgrade.

#### Overview



# 9.6.1 Preparing the memory card

## Overview

You can load the converter firmware from the Internet to a memory card.

#### Precondition

You have the appropriate memory card.

Memory cards (Page 340)

#### Procedure

- Download the required firmware to your PC from the Internet.
   Download (<u>https://support.industry.siemens.com/cs/ww/en/view/67364620</u>)
- 2. Extract the files to a directory of your choice on your PC.
- 3. Transfer the unzipped files into the root directory of the memory card.

| USER .      | ATMG168.UFW | B2XX_BE.10     |
|-------------|-------------|----------------|
| B2XX_BE.15  | B2XX_DSP.10 | B2XX_DSP.15    |
| B2XX_S.5    | B2XX_S. 10  | B230.10        |
| BET200.10   | BG110M.10   | cbe20_1.ufw    |
| CONTENT.TXT | F230P.BIN   | F230P_BT.BIN   |
| F240B.BIN   | F240D.BIN   | F240E.BIN      |
| F250D.BIN   | F250S.BIN   | FET200.BIN     |
| FG110M.BIN  | FG120C.BIN  | img_G120MC.lst |
| UPDATE.CTR  | UPDATER.INF |                |

Depending on the firmware, the filenames and the number of files may differ from the display above.

The "USER" directory does not exist on unused memory cards. After the memory card is plugged in for the first time, the converter creates a new "USER" directory.

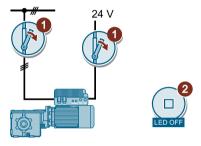
You have prepared the memory card for the firmware upgrade or downgrade.  $\hfill\square$ 

# 9.6.2 Upgrading the firmware

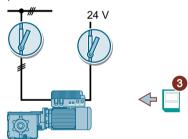
#### Overview

When upgrading the firmware, you replace the converter firmware with a newer version.

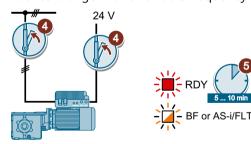
#### Precondition


- Converter and memory card have different firmware versions.
- You have the memory card with the firmware for that particular converter.

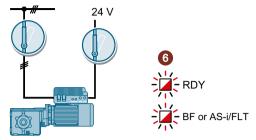
#### **Function description**


The following procedure applies to both the G115D motor-mounted converter and the G115D wall-mounted converter.

#### Procedure


- 1. Switch off the line voltage to the converter and (if installed) the external 24 V power supply or the voltage for the digital outputs of the converter.
- 2. Wait until all LEDs on the converter are dark.

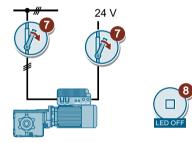



3. Insert the memory card with the matching firmware into the converter slot until it latches into place.



- 4. Switch on the power supply of the converter again.
- The converter transfers the firmware from the memory card into its memory. The transfer takes approximately 5 to 10 minutes. While data is being transferred, the LED RDY on the converter stays red. The LED BF or AS-i/FLT flashes orange with a variable frequency.



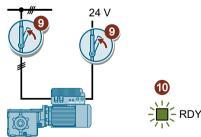

6. At the end of the transfer, the LED RDY and BF (or AS-i/FLT) slowly flash red (0.5 Hz).



#### Power supply failure during transfer

The converter firmware will be incomplete if the power supply fails during the transfer.

- Start again with step 1 of the instructions.
- 7. Switch off the power supply of the converter.
- 8. Wait until all LEDs on the converter are dark.




9. Remove the memory card from the converter.

**Note:** You can also leave the memory card in the converter. The converter will behave differently depending on whether the memory card contains a data backup:

- If the memory card contains a data backup of the converter settings:
   ⇒ The converter will take the settings from the memory card in step 10.
- If the memory card does not have a data backup of the converter settings:
   ⇒ The converter will write its settings to the memory card in step 10.
- 10. Switch on the power supply of the converter again.

If the firmware upgrade was successful, after several seconds the converter LED RDY turns green.



You have upgraded the converter firmware to a newer version.

#### 9.6.3 Downgrading the firmware

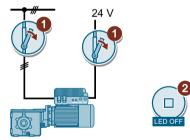
## Introduction

When downgrading the firmware, you replace the converter firmware with an older version.

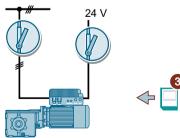
Only update the firmware to an older level if, after replacing a converter, you require the same firmware in all converters.

#### Precondition

- Converter and memory card have different firmware versions.
- You have the memory card with the firmware for that particular converter.
- You have backed up the converter settings on the memory card or in a PC, or on the SINAMICS G120 Smart Access.


Data backup and series commissioning (Page 339)

## **Function description**

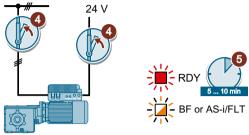

The following procedure applies to both the G115D motor-mounted converter and the G115D wall-mounted converter.

#### Procedure

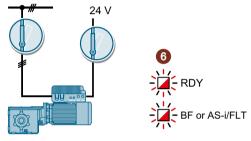
- 1. Switch off the line voltage to the converter and (if installed) the external 24 V power supply or the voltage for the digital outputs of the converter.
- 2. Wait until all LEDs on the converter are dark.



3. Insert the memory card with the matching firmware into the converter slot until it latches into place.



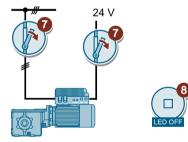

4. Switch on the power supply of the converter again.


9.6 Firmware upgrade and downgrade

5. The converter transfers the firmware from the memory card into its memory. The transfer takes approximately 5 to 10 minutes. While data is being transferred, the LED RDV on the converter stays red. The RE or AS i/EU

While data is being transferred, the LED RDY on the converter stays red. The BF or AS-i/FLT LED flashes orange with a variable frequency.




6. At the end of the transfer, the LED RDY and BF (or AS-i/FLT) slowly flash red (0.5 Hz).

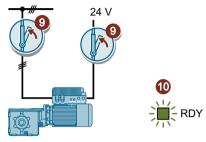


## Power supply failure during transfer

The converter firmware will be incomplete if the power supply fails during the transfer.

- Start again with step 1 of the instructions.
- 7. Switch off the power supply of the converter.
- 8. Wait until all LEDs on the converter are dark.




- Remove the memory card from the converter.
   Note: You can also leave the memory card in the converter. The converter will behave differently depending on whether the memory card contains a data backup:
  - If the memory card contains a data backup of the converter settings:
     ⇒ The converter will take the settings from the memory card in step 10.
  - If the memory card does not have a data backup of the converter settings:
     ⇒ The converter will reset to factory settings and write the settings to the memory card in step 10.

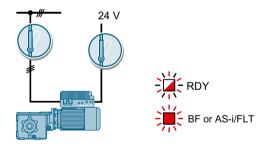
9.6 Firmware upgrade and downgrade

10. Switch on the converter power supply again.

If the firmware downgrade was successful, after several seconds the converter LED RDY turns green.

The converter is reset to factory settings after firmware downgrade.




11. Transfer the settings from your data backup to the converter. Memory card  $\rightarrow$  converter (Page 343) PG/PC  $\rightarrow$  converter (Page 347)

You have downgraded the converter firmware to an older version and transferred the settings to the converter.

# 9.6.4 Correcting an unsuccessful firmware upgrade or downgrade

## Precondition

The converter signals an unsuccessful firmware upgrade or downgrade with a quickly flashing LED RDY and a lit-up LED BF (or AS-i FLT).



## Correcting a failed upgrade or downgrade

You can check the following to correct an unsuccessful firmware upgrade or downgrade:

- Have you inserted the card properly?
- Does the card contain the correct firmware?

Repeat the firmware upgrade or downgrade procedure.

# 9.7 Reduced acceptance test after component replacement and firmware change

After a component has been replaced or the firmware updated, a reduced acceptance test of the safety functions must be performed.

| Measure                                                                                                         | Reduced a                                                                                                                    | acceptance test                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                 | Acceptance test                                                                                                              | Documentation                                                                                                                                    |
| Replacing the converter with an identical type                                                                  | Not required.<br>Only check the direction of ro-<br>tation of the motor.                                                     | <ul> <li>Supplement the converter data</li> <li>Log the new checksums</li> <li>Countersignature</li> <li>Supplement the hardware ver-</li> </ul> |
| Replacing the motor with an identi-<br>cal pole pair number<br>Replace the gearbox with an identi-<br>cal ratio |                                                                                                                              | sion in the converter data.<br>No change.                                                                                                        |
| Replacing safety-related I/O devices<br>(e.g. Emergency Stop switch).                                           | Not required.<br>Only check the control of the<br>safety functions affected by<br>the components that have<br>been replaced. | No change.                                                                                                                                       |
| Converter firmware upgrade.                                                                                     | Not required.                                                                                                                | <ul> <li>Supplement firmware version<br/>in the converter data</li> <li>Log the new checksums</li> <li>Countersignature.</li> </ul>              |

9.7 Reduced acceptance test after component replacement and firmware change

For more information on the technical data of the geared motors, refer to the following chapter: Additional information on the SIMOGEAR geared motor (Page 429)

# 10.1.1 General technical data

# **Electrical data**

| Property                            | Explanation                                                                                                                            |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Line voltage                        | For systems according to IEC:                                                                                                          |  |  |
|                                     | – 3 AC 380 V (-10 %) 480 V (+10 %)                                                                                                     |  |  |
|                                     | For systems according to UL:                                                                                                           |  |  |
|                                     | – 3 AC 380Y/220 V 480Y/277 V                                                                                                           |  |  |
|                                     | The actual permissible line voltage depends upon the installation altitude.                                                            |  |  |
| Line supply configurations          | TN, TT, IT <sup>1)</sup>                                                                                                               |  |  |
|                                     | Not for corner-grounded network.                                                                                                       |  |  |
|                                     | Permissible line supplies (Page 54)                                                                                                    |  |  |
| Line frequency                      | 50 Hz/60 Hz (±10%)                                                                                                                     |  |  |
| Output frequency                    | 0 Hz 550 Hz in U/f                                                                                                                     |  |  |
|                                     | 0 Hz 240 Hz in SLVC (default)                                                                                                          |  |  |
| Converter efficiency                | 96% 98%                                                                                                                                |  |  |
| Power factor λ                      | 0.73 0.90                                                                                                                              |  |  |
| cos φ                               | 0.98 0.99                                                                                                                              |  |  |
| Line impedance                      | Uk<4% (RSC>25)                                                                                                                         |  |  |
| Inrush current                      | Less than 2 × rated input current.                                                                                                     |  |  |
|                                     | The converter can withstand 100000 power cycles with an interval of 120 s.                                                             |  |  |
| Overvoltage category                | III, according to IEC 61800-5-1                                                                                                        |  |  |
| Maximum short-circuit current (SCCR | When using fuses: 65 kA rms                                                                                                            |  |  |
| or lcc)                             | You can find the data for further overcurrent protection devices on the Internet:                                                      |  |  |
|                                     | Branch protection and short-circuit strength according to UL and IEC ( <u>https://support.industry.siemens.com/cs/ww/en/ps/27867</u> ) |  |  |
| Minimum short-circuit current       | 5 kA rms                                                                                                                               |  |  |

| Property                     | Explanation                                                             |
|------------------------------|-------------------------------------------------------------------------|
| Earth fault current          | The converter can be operated with a type B 300 mA RCD.                 |
| Electromechanical (EM) brake | • 180 V DC                                                              |
|                              | <ul> <li>Rated current: 0.8 A</li> </ul>                                |
|                              | <ul> <li>Disconnection on the DC side permits "fast" braking</li> </ul> |

<sup>1)</sup> For IT system, only permissible when the functional grounding in the converter has been removed.

# Safety Integrated

| Property        | Explanation                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safety function | STO, SIL2 / PL d / Category 3                                                                                                                                                                                                                                                                                           |
|                 | STO fulfils the requirements of the following standards:                                                                                                                                                                                                                                                                |
|                 | • SIL 2 according to IEC61508, part 1 to 3 (2010)                                                                                                                                                                                                                                                                       |
|                 | • PL d according to IEC61800-5-2 (2016)                                                                                                                                                                                                                                                                                 |
|                 | Category 3 according to ISO13849 part 1 (2015)                                                                                                                                                                                                                                                                          |
|                 | The function STO corresponds to stop category 0 according to IEC60204 (2005)                                                                                                                                                                                                                                            |
|                 | Response time: 20 ms                                                                                                                                                                                                                                                                                                    |
|                 | The response time of the Safe Torque Off function is the time between selecting the function and the function becoming active.                                                                                                                                                                                          |
|                 | Probability of failures:                                                                                                                                                                                                                                                                                                |
|                 | <ul> <li>Probability of dangerous failure per hour: PFH &lt; 50×10<sup>-9</sup></li> <li>PFH according to IEC 61800-5-2</li> </ul>                                                                                                                                                                                      |
|                 | <ul> <li>Probability of dangerous failure on demand: PFD &lt; 50×10<sup>-5</sup></li> <li>PFD according to IEC 61508</li> </ul>                                                                                                                                                                                         |
|                 | Mission time: 20 years                                                                                                                                                                                                                                                                                                  |
|                 | You may not operate converters with integrated safety functions for longer than the mission time. The mission time starts when the device is delivered. The mission time cannot be extended. This is the case even if a service department checks the converter – or in the meantime, the converter was decommissioned. |

# **Environmental conditions**

| Property                     |                          | Explanation                                                             |  |
|------------------------------|--------------------------|-------------------------------------------------------------------------|--|
| Surrounding tem-<br>perature | Storage & trans-<br>port | -25 °C to +50 °C                                                        |  |
|                              | Operation                | -30 °C to +55 °C <sup>1)</sup>                                          |  |
|                              |                          | Torque derating as a function of the surrounding temperature (Page 408) |  |
| Vibration severity           |                          | Grade A according to IEC 60034-14                                       |  |
|                              |                          | Mounting the G115D Motor Mounted drive (Page 39)                        |  |
| Pollution degree             |                          | Suitable for pollution degree 2 environment according to EN 61800-5-1   |  |
| Relative humidity            |                          | < 95% (non-condensation, no icing, no salt spray)                       |  |
| Installation altitude        |                          | Up to 1000 m above sea level without derating                           |  |
|                              |                          | Above 1000 m (up to 4000 m) with derating                               |  |
|                              |                          | Torque derating as a function of the installation altitude (Page 407)   |  |

| Property                           | Explanation                                                                                                                                         |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cooling method                     | Active cooling with the motor fan                                                                                                                   |  |
| Cooling air                        | Clean and dry air                                                                                                                                   |  |
| Degree of protection <sup>2)</sup> | G115D converter with SIMOGEAR geared motor: UL enclosed type                                                                                        |  |
|                                    | Siemens recommends that you use the cables and connectors given in the linked chapter below to satisfy the suitable rating of the UL enclosed type. |  |
| Weight                             | The weight is stated on the rating plate.                                                                                                           |  |

<sup>1)</sup> For UL-compliant applications, the maximum surrounding temperature for a glanded variant with daisy chain is 48 °C.

<sup>2)</sup> For the specific degree of protection of your converter, refer to the rating plate on your component.

# 10.1.2 Technical data of inputs and outputs

| Property            | Explanation                                                                                                                                                                  |                                                                            |  |  |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Fieldbus interface  | PROFINET                                                                                                                                                                     |                                                                            |  |  |  |
|                     | AS-i                                                                                                                                                                         |                                                                            |  |  |  |
| Operating voltage   | PROFINET variant:                                                                                                                                                            | 24 V DC ± 15%                                                              |  |  |  |
|                     | • I/O Control variant:                                                                                                                                                       | 24 V DC ± 15%                                                              |  |  |  |
|                     | • AS-i variant <sup>1)</sup> :                                                                                                                                               | 26.5 V to 31.6 V, 24 V DC ± 15%                                            |  |  |  |
| 24 V power supply   | There are three options re                                                                                                                                                   | garding the 24 V supply:                                                   |  |  |  |
|                     | • The converter (I/O Control variant or PROFINET variant) obtains its 24 V power supply via terminals or via the M12 L-coding connector or 7/8" connector with 24 V DC ± 15% |                                                                            |  |  |  |
|                     | • The converter (AS-i variant) obtains its 24 V power supply via X03 (M12 A-coding, two poles with AS-i power supply, two poles with 24 V DC ± 15%)                          |                                                                            |  |  |  |
|                     | <ul> <li>The converter generat<br/>supply unit.</li> </ul>                                                                                                                   | es its 24 V power supply from the line voltage via the optional 24 V power |  |  |  |
| Setpoint resolution | 0.01 Hz                                                                                                                                                                      |                                                                            |  |  |  |
| Digital inputs      | 4 (DI 0 to DI 3)                                                                                                                                                             | Programmable digital inputs                                                |  |  |  |
|                     |                                                                                                                                                                              | PNP, SIMATIC-compatible                                                    |  |  |  |
|                     |                                                                                                                                                                              | Unswitched logic supply                                                    |  |  |  |
|                     |                                                                                                                                                                              | <ul> <li>Input voltage: High &gt; 11 V, Low &lt; 5 V</li> </ul>            |  |  |  |
|                     |                                                                                                                                                                              | • Maximum input voltage: 30 V                                              |  |  |  |
|                     |                                                                                                                                                                              | Maximum input current: 15 mA                                               |  |  |  |

| Property                | Explanation              |                                                                                                                                             |
|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Configurable DI/DO      | 2 (DIO 24 & DIO 25)      | Can be configured as digital inputs or outputs                                                                                              |
|                         |                          | When used as digital inputs:                                                                                                                |
|                         |                          | <ul> <li>Switched logic supply</li> </ul>                                                                                                   |
|                         |                          | <ul> <li>Same specification as DI 0 to DI 3</li> </ul>                                                                                      |
|                         |                          | When used as digital output:                                                                                                                |
|                         |                          | – PNP                                                                                                                                       |
|                         |                          | <ul> <li>Switched logic supply</li> </ul>                                                                                                   |
|                         |                          | <ul> <li>24 V DC/0 A to 0.5A (resistive load)</li> </ul>                                                                                    |
|                         |                          | <ul> <li>Continuous current rating: max. 500 mA for two DOs in tota</li> </ul>                                                              |
|                         |                          | <ul> <li>Updating time of all digital outputs: 2 ms</li> </ul>                                                                              |
| Motor temperature sen-  | PTC                      | • Short-circuit monitoring < 20 $\Omega$                                                                                                    |
| sor                     |                          | <ul> <li>Overtemperature 1650 Ω</li> </ul>                                                                                                  |
|                         | Pt1000                   | <ul> <li>Measurement range: -48 °C to 248 °C</li> </ul>                                                                                     |
|                         |                          | • Short-circuit monitoring < 603 $\Omega$                                                                                                   |
|                         |                          | • Wire-break > 2120 $\Omega$                                                                                                                |
|                         | KTY84                    | <ul> <li>Measurement range: -48 °C to 248 °C</li> </ul>                                                                                     |
|                         |                          | • Short-circuit monitoring < 50 $\Omega$                                                                                                    |
|                         |                          | • Wire-break > 2120 $\Omega$                                                                                                                |
|                         | Temperature switch       | • Opened temperature switch $\geq$ 100 $\Omega$                                                                                             |
| Fail-safe digital input | 1 (DI 2 and DI 3)        | <ul> <li>If you enable safety function STO, then the fail-safe digital input<br/>comprises the two digital inputs DI 2 and DI 3.</li> </ul> |
|                         |                          | • The fail-safe digital inputs are in accordance with EN 61131-2:                                                                           |
|                         |                          | <ul> <li>Input voltage: High &gt; 11 V, Low &lt; 5 V</li> </ul>                                                                             |
|                         |                          | <ul> <li>Maximum input current: 15 mA</li> </ul>                                                                                            |
|                         |                          | <ul> <li>Maximum input voltage: 30 V</li> </ul>                                                                                             |
|                         |                          | Response time:                                                                                                                              |
|                         |                          | <ul> <li>When the debounce time p9651 &gt; 0: Typical 5 ms + p9651,<br/>worst case 15 ms + p9651</li> </ul>                                 |
|                         |                          | <ul> <li>When debounce time = 0: Typical 6 ms, worst case 16 ms</li> </ul>                                                                  |
| PROFIsafe               |                          | Yes (for PROFINET version only)                                                                                                             |
| Encoder interface       | 1 (DI 0 & DI 1)          | • Via 2 digital inputs (DI 0 and DI 1)                                                                                                      |
|                         |                          | • HTL, 2-track (A/B)                                                                                                                        |
|                         |                          | Power supply: 18 V DC to 30 V DC                                                                                                            |
|                         |                          | Maximum input frequency: 200 kHz                                                                                                            |
|                         |                          | Maximum current consumption: 100 mA                                                                                                         |
| JSB interface           | Mini-USB                 |                                                                                                                                             |
| Memory card (optional)  | Slot for SD memory cards |                                                                                                                                             |
|                         | Memory cards (Page       | 340)                                                                                                                                        |

<sup>1)</sup> For AS-i variant, the converter is mainly powered by the specific AS-i power supply through the yellow cable, the supply voltage range is 26.5 V to 31.6 V. The auxiliary 24 V power supply (24 V DC ±15%) must be used to run the motor.

| Frame size | Rated power (kW) | Input current (A) | Power loss (W) |
|------------|------------------|-------------------|----------------|
| FSA        | 0.37             | 1.08              | 20.22          |
|            | 0.55             | 1.47              | 24.43          |
|            | 0.75             | 1.79              | 28.52          |
|            | 1.1              | 2.43              | 37.47          |
|            | 1.5              | 3.18              | 49.02          |
| FSB        | 2.2              | 4.65              | 64.35          |
|            | 3                | 6.23              | 85.89          |
|            | 4                | 8.16              | 114.53         |

# 10.1.3 Technical data dependent upon the power

## Typical current consumption on 24 V DC power supply

| G115D motor-<br>mounted convert- | Typical current con<br>24 V power supply, |             | Typical current consumption from the AS-i cable <sup>2) 3)</sup> |             |  |
|----------------------------------|-------------------------------------------|-------------|------------------------------------------------------------------|-------------|--|
| er                               | PROFINET variant                          | I/O variant | AS-i variant                                                     |             |  |
|                                  |                                           |             | Yellow cable                                                     | Black cable |  |
| FSA/FSB                          | 290 mA                                    | 250 mA      | 90 mA                                                            | 200 mA      |  |

<sup>1)</sup> The typical current consumption does not include the consumption of connected sensors at DI 0 to DI 3 from the unswitched 24 V power supply and the consumption of connected sensors/actors at DIO 24/ DIO 25 from the switched 24 V power supply.

<sup>2)</sup> The typical current consumption does not include the consumption of connected sensors at DI 0 to DI 3 from the yellow cable and the consumption of connected sensors/actors at DIO 24/DIO 25 from the black cable.

<sup>3)</sup> The current consumption for digital inputs DI 0 ~ DI 3 is max. 200 mA in total. The current consumption for digital inputs DI 24 and DI 25 (when DIO 24/DIO 25 is configured as DI) is max. 200 mA in total, and the current consumption for digital outputs DO 24 and DO 25 (when DIO 24/DIO 25 is configured as DO) is max. 500 mA in total.

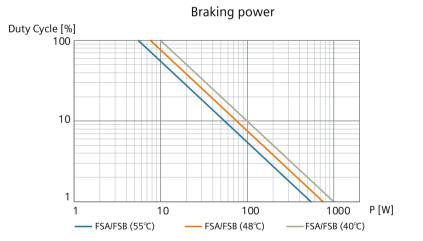
## Standby currents

| G115D motor | -mounted converter | Standby current (mA)                                                         |    |    |    |    |              |
|-------------|--------------------|------------------------------------------------------------------------------|----|----|----|----|--------------|
|             |                    | Mains power supply without optional 24 V DC power supply                     |    |    |    |    |              |
| Frame size  | Rated power        | 380 V, 50 Hz 380 V, 60 Hz 400 V, 50 Hz 400 V, 60 Hz 480 V, 50 Hz 480 V, 60 H |    |    |    |    | 480 V, 60 Hz |
| FSA         | 0.37 kW to 1.5 kW  | 32                                                                           | 39 | 34 | 41 | 41 | 49           |
| FSB         | 2.2 kW to 4 kW     | 69                                                                           | 83 | 73 | 87 | 87 | 104          |

| G115D motor | -mounted converter | Standby current (mA)                                                         |     |     |     |     |              |
|-------------|--------------------|------------------------------------------------------------------------------|-----|-----|-----|-----|--------------|
|             |                    | Mains power supply with optional 24 V DC power supply                        |     |     |     |     |              |
| Frame size  | Rated power        | 380 V, 50 Hz 380 V, 60 Hz 400 V, 50 Hz 400 V, 60 Hz 480 V, 50 Hz 480 V, 60 H |     |     |     |     | 480 V, 60 Hz |
| FSA         | 0.37 kW to 1.5 kW  | 64                                                                           | 71  | 62  | 69  | 59  | 67           |
| FSB         | 2.2 kW to 4 kW     | 101                                                                          | 115 | 101 | 115 | 105 | 122          |

# 10.1.4 Technical data of braking resistors

# Requirements for the minimum resistance of braking resistors


For each frame size, the minimum resistance of braking resistors is required as follows:

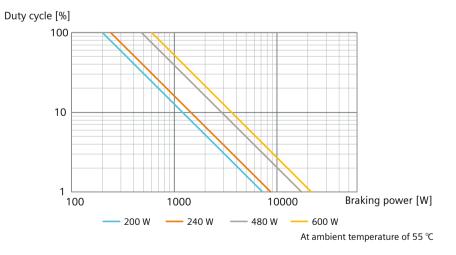
| Frame size | Rated power       | Minimum resistance of braking resistors |
|------------|-------------------|-----------------------------------------|
| FSA        | 0.37 kW to 1.5 kW | 200 Ω                                   |
| FSB        | 2.2 kW to 4 kW    | 80 Ω                                    |

# Technical data of integrated braking resistor

| G115D moto | r-mounted converter |            | Integrated braking resistor |                                  |  |  |  |
|------------|---------------------|------------|-----------------------------|----------------------------------|--|--|--|
| Frame size | Rated power         | Resistance | Continuous braking<br>power | Peak braking power <sup>1)</sup> |  |  |  |
| FSA        | 0.37 kW to 1.5 kW   | 350 Ω      | 10 W                        | 100 W                            |  |  |  |
| FSB        | 2.2 kW to 4 kW      | 175 Ω      | 10 W                        | 100 W                            |  |  |  |

<sup>1)</sup> Peak braking power at 10% cycle time of a 120s cycle. For the peak braking power at different duty cycles, refer to the following diagram.




#### SINAMICS G115D distributed drive Operating Instructions, 12/2021, FW V4.7 SP13, A5E48681219B-004

## Technical data of external braking resistor

The external braking resistors are not included in the scope of delivery of the G115D converter. The following optional external braking resistors are available.

| G115D motor-<br>mounted converter |                                                                                                         |       | External braking resistor |                                                         |                                        |                                            |                   |  |  |
|-----------------------------------|---------------------------------------------------------------------------------------------------------|-------|---------------------------|---------------------------------------------------------|----------------------------------------|--------------------------------------------|-------------------|--|--|
| Frame<br>size                     | Rated pow-<br>erResist-<br>ance<br>(+/-10%)Continu-<br>ous brak-<br>ing powerPeak brak-<br>ing pow-<br> |       | Article number            | Vibra-<br>tion and<br>shock<br>during<br>opera-<br>tion | Sur-<br>round-<br>ing tem-<br>perature |                                            |                   |  |  |
| FSA                               | 0.37 kW to<br>1.5 kW                                                                                    | 210 Ω | 200 W                     | 1200 W                                                  | 6SL3501-1BE32-0<br>AA0                 | Class<br>3M2, test<br>accord-<br>ing to EN | -30 ℃ to<br>+55 ℃ |  |  |
|                                   |                                                                                                         | 240 Ω | 240 W                     | 1440 W                                                  | 6SL3501-1BE32-4<br>AA0                 |                                            |                   |  |  |
|                                   |                                                                                                         | 480 Ω | 480 W                     | 2880 W                                                  | 6SL3501-1BE34-8<br>AA0                 | 60721-3-<br>3                              |                   |  |  |
| FSB                               | 2.2 kW to 4<br>kW                                                                                       | 160 Ω | 200 W                     | 1200 W                                                  | 6SL3501-1BE32-0B<br>A0                 |                                            |                   |  |  |
|                                   |                                                                                                         | 150 Ω | 240 W                     | 1440 W                                                  | 6SL3501-1BE32-4B<br>A0                 |                                            |                   |  |  |
|                                   |                                                                                                         | 150 Ω | 600 W                     | 3600 W                                                  | 6SL3501-1BE36-0B<br>A0                 |                                            |                   |  |  |

<sup>1)</sup> Peak braking power at 10% cycle time of a 120s cycle. For the peak braking power at different duty cycles, refer to the following diagram.



# 10.1.5 Load cycles and overload capabilities

Overload capability is the property of the converter to temporarily supply a current that is higher than the rated current to accelerate a load.

# Definitions

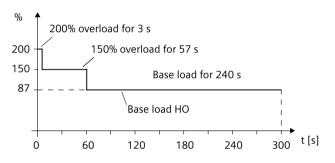
## Base load

Constant load between the accelerating phases of the converter

## HO base load input current

Permissible input current for a "High Overload" load cycle

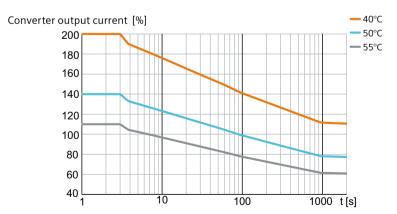
## HO base load output current


Permissible output current for a "High Overload" load cycle

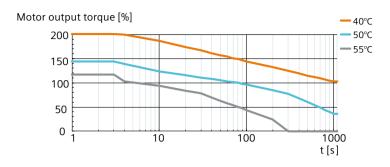
## HO base load power

Rated power based on the HO base load output current

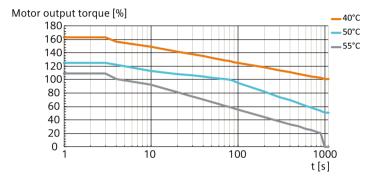
If not specified otherwise, the power and current data in the technical data always refer to a load cycle according to High Overload.


## Permissible converter overload




## Note

- The rated ambient temperature for the above load cycles is 40 °C.
- You can set the parameter p0292[0] to a range of 5 °C to 25 °C based on the application.

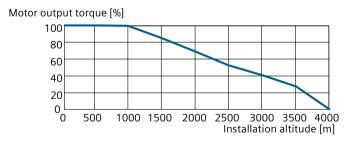

## Permissible converter output current



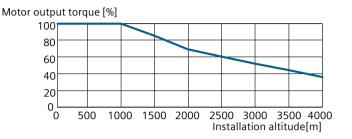
## Permissible motor output torque (2KJ8 asynchronous motor)



#### Permissible motor output torque (2KJ8 synchronous reluctance motor)



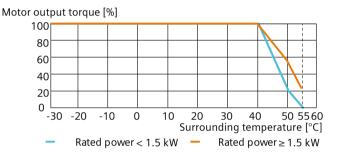

# 10.1.6 Derating data


## 10.1.6.1 Torque derating as a function of the installation altitude

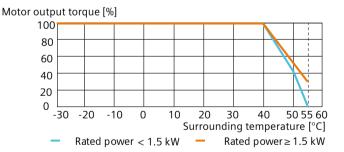
The permissible motor output torque is reduced above an installation altitude of 1000 m.

#### Torque derating of 2KJ8 asynchronous motor




## Torque derating of 2KJ8 synchronous reluctance motor

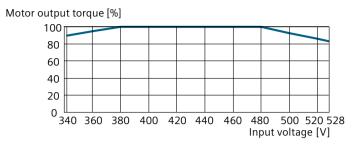



# 10.1.6.2 Torque derating as a function of the surrounding temperature

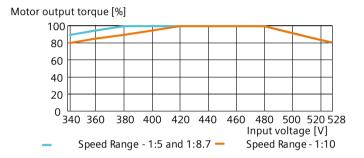
The permissible motor output torque is reduced when the surrounding air temperature is above 40  $^\circ\!C.$ 

## Torque derating of 2KJ8 asynchronous motor




#### Torque derating of 2KJ8 synchronous reluctance motor



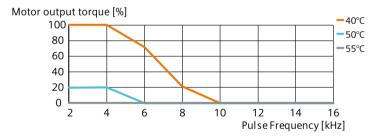

## 10.1.6.3 Toque derating as a function of the line voltage

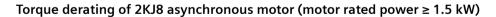
The 2KJ8 asynchronous motor (across all speed ranges) and the 2KJ8 synchronous reluctance motor (with speed range 1:5 or 1:8.7) operate at 100% rated output torque at a line voltage from 380 V to 480 V. The 2KJ8 synchronous reluctance motor with speed range 1:10 operates at 100% rated output torque at a line voltage from 420 V to 480 V. The output torque should be reduced when the line voltage falls outside the range.

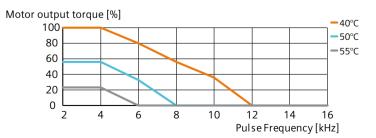
#### Torque derating of 2KJ8 asynchronous motor



#### Torque derating of 2KJ8 synchronous reluctance motor



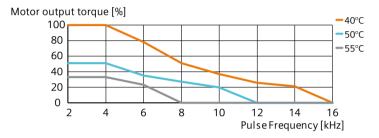


# 10.1.6.4 Torque derating as a function of the pulse frequency


The permissible motor output torque is reduced when the converter is operated at a pulse frequency above 4 kHz and/or at an ambient temperature above 40°C.

The pulse frequency reduces automatically based on the heatsink temperature.

## Torque derating of 2KJ8 asynchronous motor (motor rated power < 1.5 kW)



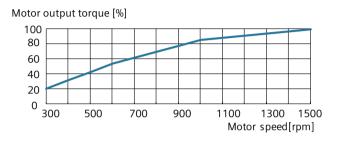




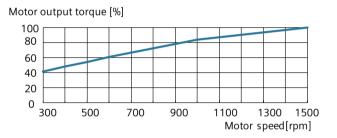

# Torque derating of 2KJ8 synchronous reluctance motor (motor rated power < 1.5 kW)



## Torque derating of 2KJ8 synchronous reluctance motor (motor rated power ≥ 1.5 kW)



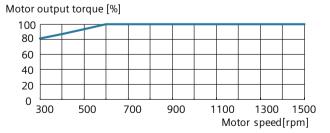

# 10.1.6.5 Torque derating as a function of the motor speed


## Derating of motor output torque as a function of motor speed (with daisy chain)

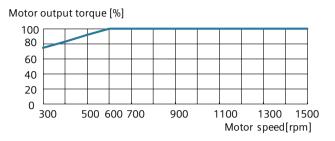
With daisy chain connection, the motor output torque should be reduced when the motor speed is below 1500 rpm.

#### Torque derating of 2KJ8 asynchronous motor




#### Torque derating of 2KJ8 synchronous reluctance motor




## Derating of motor output torque as a function of motor speed (without daisy chain)

For motors with speed range 1:5 or 1:8.7, if the converter is not connected via daisy chain, the motor torque should be reduced when the motor speed is below 600 rpm. For motors with speed range 1:10 and without daisy chain connection, the motor can be operated at its rated torque until 300 rpm.

#### Torque derating of 2KJ8 asynchronous motor



# Torque derating of 2KJ8 synchronous reluctance motor



#### Note

For a 4 kW G115D motor-mounted converter without daisy chain, the derating curve is the same as that with daisy chain.

# 10.2 Technical data of the G115D wall-mounted converter

# 10.2.1 General converter technical data

# **Electrical data**

| Property                   | Explanation                                                                 |
|----------------------------|-----------------------------------------------------------------------------|
| Line voltage               | For systems according to IEC:                                               |
|                            | - 3 AC 380 V (-10 %) 480 V (+10 %)                                          |
|                            | For systems according to UL:                                                |
|                            | – 3 AC 380Y/220 V 480Y/277 V                                                |
|                            | The actual permissible line voltage depends upon the installation altitude. |
| Line supply configurations | TN, TT, IT <sup>1)</sup>                                                    |
|                            | Not for corner-grounded network.                                            |
|                            | Permissible line supplies (Page 54)                                         |
| Output voltage             | 3 AC 0 V line voltage                                                       |
| Line frequency             | 50 Hz/60 Hz (±10%)                                                          |
| Output frequency           | 0 Hz 550 Hz in U/f                                                          |
|                            | 0 Hz 240 Hz in SLVC                                                         |
| Converter efficiency       | 96% 98%                                                                     |
| Power factor $\lambda$     | 0.80 0.91                                                                   |
| cos φ                      | 0.98 0.99                                                                   |
| Line impedance             | Uk<4% (RSC>25)                                                              |
| Inrush current             | Less than 2 × rated input current.                                          |
|                            | The converter can withstand 100000 power cycles with an interval of 120 s.  |

| Property                            | Explanation                                                                                                                            |  |  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Overvoltage category                | III, according to IEC 61800-5-1                                                                                                        |  |  |
| Pulse frequency                     | 4 kHz (default); 2 kHz16 kHz (in steps of 2 kHz)                                                                                       |  |  |
|                                     | Current derating as a function of the pulse frequency (Page 422)                                                                       |  |  |
| Maximum short-circuit current (SCCR | When using fuses: 65 kA rms                                                                                                            |  |  |
| or lcc)                             | You can find the data for further overcurrent protection devices on the Internet:                                                      |  |  |
|                                     | Branch protection and short-circuit strength according to UL and IEC ( <u>https://support.industry.siemens.com/cs/ww/en/ps/27867</u> ) |  |  |
| Minimum short-circuit current       | 5 kA rms                                                                                                                               |  |  |
| Earth fault current                 | The converter can be operated with a type B 300 mA RCD.                                                                                |  |  |
| Electromechanical (EM) brake        | • 180 V DC                                                                                                                             |  |  |
|                                     | <ul> <li>Rated current: 0.8 A</li> </ul>                                                                                               |  |  |
|                                     | <ul> <li>Disconnection on the DC side permits "fast" braking</li> </ul>                                                                |  |  |
|                                     | • 400 V AC (optional, for wall-mounted converter only)                                                                                 |  |  |
|                                     | <ul> <li>Rated current: 1 A</li> </ul>                                                                                                 |  |  |

<sup>1)</sup> For IT system, only permissible when the functional grounding in the converter has been removed.

# Safety Integrated

| Property        | Explanation                                                                                                                                                                                                                                                                                                             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Safety function | STO, SIL2 / PL d / Category 3                                                                                                                                                                                                                                                                                           |
|                 | STO fulfils the requirements of the following standards:                                                                                                                                                                                                                                                                |
|                 | • SIL 2 according to IEC61508, part 1 to 3 (2010)                                                                                                                                                                                                                                                                       |
|                 | • PL d according to IEC61800-5-2 (2016)                                                                                                                                                                                                                                                                                 |
|                 | Category 3 according to ISO13849 part 1 (2015)                                                                                                                                                                                                                                                                          |
|                 | The function STO corresponds to stop category 0 according to IEC60204 (2005)                                                                                                                                                                                                                                            |
|                 | Response time: 20 ms                                                                                                                                                                                                                                                                                                    |
|                 | The response time of the Safe Torque Off function is the time between selecting the function and the function becoming active.                                                                                                                                                                                          |
|                 | Probability of failures:                                                                                                                                                                                                                                                                                                |
|                 | <ul> <li>Probability of dangerous failure per hour: PFH &lt; 25×10<sup>-9</sup></li> <li>PFH according to IEC 61800-5-2</li> </ul>                                                                                                                                                                                      |
|                 | <ul> <li>Probability of dangerous failure on demand: PFD &lt; 25×10<sup>-5</sup></li> <li>PFD according to IEC 61508</li> </ul>                                                                                                                                                                                         |
|                 | Mission time: 20 years                                                                                                                                                                                                                                                                                                  |
|                 | You may not operate converters with integrated safety functions for longer than the mission time. The mission time starts when the device is delivered. The mission time cannot be extended. This is the case even if a service department checks the converter – or in the meantime, the converter was decommissioned. |

# **Environmental conditions**

| Property                                |                         | Explanation                                                                                                                                                                                |  |  |  |
|-----------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Surrounding tem-                        | Storage                 | -40 °C to +70 °C, Class 1K4 according to IEC 60721-3-1, in product packaging                                                                                                               |  |  |  |
| perature                                | Transport               | -40 °C to +70 °C, Class 2K4 according to IEC 60721-3-2, in transport packaging                                                                                                             |  |  |  |
|                                         | Operation               | -30 °C to +55 °C <sup>1)</sup> , Class 3K3 according to IEC 60721-3-3                                                                                                                      |  |  |  |
|                                         |                         | Power derated by 3%/K when > 40 $^{\circ}$ C                                                                                                                                               |  |  |  |
|                                         |                         | Current derating as a function of the surrounding temperature (Page 420)                                                                                                                   |  |  |  |
| Vibration and                           | Transport               | Class 2M3, test according to EN 60721-3-2                                                                                                                                                  |  |  |  |
| shock                                   | Operation               | Class 3M2, test according to EN 60721-3-3                                                                                                                                                  |  |  |  |
| Resistance to biologistances            | gically active sub-     | Class 3B1 according to EN 60721-3-3                                                                                                                                                        |  |  |  |
| Pollution degree                        |                         | Suitable for pollution degree 2 environment according to IEC 61800-5-1                                                                                                                     |  |  |  |
| Relative humidity                       |                         | < 95% (non-condensing, no icing, no salt spray)                                                                                                                                            |  |  |  |
| Installation altitude                   |                         | Up to 1000 m above sea level without derating                                                                                                                                              |  |  |  |
|                                         |                         | Above 1000 m (up to 4000 m) with derating                                                                                                                                                  |  |  |  |
|                                         |                         | Current derating as a function of the installation altitude (Page 420)                                                                                                                     |  |  |  |
| Cooling method                          |                         | FSA/FSB (2.2 kW to 3 kW): Natural convection cooling                                                                                                                                       |  |  |  |
|                                         |                         | FSB (4 kW)/FSC: Air cooling with integrated fan                                                                                                                                            |  |  |  |
| Cooling air                             |                         | Clean and dry air                                                                                                                                                                          |  |  |  |
| Degree of protec-<br>tion <sup>2)</sup> | Glanded variant:        | <ul> <li>IP66/UL Type 4X indoor use only<br/>(IP65/UL Type 4X indoor use only if the converter has Q8/0 connector at interface<br/>X2 or the optional integrated repair switch)</li> </ul> |  |  |  |
|                                         | Connector var-<br>iant: | <ul> <li>IP65/UL Type 4X indoor use only<br/>(IP65/No UL Type if the converter has MQ 15X or QUICKON connector at interface<br/>X1)</li> </ul>                                             |  |  |  |
|                                         | the suitable rating     | ends that you use the cables and connectors given in the linked chapter below to satisfy<br>g of the UL enclosed type.<br>connectors (Page 69)                                             |  |  |  |

<sup>1)</sup> For UL-compliant applications, the maximum surrounding temperature for a glanded variant with daisy chain is 48 °C.

<sup>2)</sup> For the specific degree of protection of your converter, refer to the rating plate on your component.

# 10.2.2 Technical data of inputs and outputs

The technical data of inputs and outputs for G115D wall-mounted converter are the same with that of G115D converter with geared motors. For details, see Chapter "Technical data of inputs and outputs (Page 401)".

| 1.23       33.73         1.58       37.61         1.99       43.10         2.69       53.58         3.48       66.99 |
|----------------------------------------------------------------------------------------------------------------------|
| 1.9943.102.6953.58                                                                                                   |
| 2.69 53.58                                                                                                           |
|                                                                                                                      |
| 3.48 66.99                                                                                                           |
|                                                                                                                      |
| 5.18 95.96                                                                                                           |
| 6.76 125.82                                                                                                          |
| 8.95 172.89                                                                                                          |
| 11.88 170.85                                                                                                         |
| 17.11 245.54                                                                                                         |
|                                                                                                                      |

# 10.2.3 Technical data dependent upon the power

| Frame | Rated pow-  |                    |                                        | Net weight (kg       | /lb.)                                                     |
|-------|-------------|--------------------|----------------------------------------|----------------------|-----------------------------------------------------------|
| size  | er (kW)     | Glanded<br>variant | Glanded<br>variant with<br>Q8/0 or M12 | Connector<br>variant | Additional weight                                         |
| FSA   | 0.37 to 1.5 | 5.54 (12.19)       | 5.66 (12.44)                           | 5.77 (12.70)         | <ul> <li>Integrated repair switch:</li> </ul>             |
| FSB   | 2.2 to 3    | 7.12 (15.67)       | 7.24 (15.92)                           | 7.35 (16.18)         | +0.18 (0.4)                                               |
|       | 4           | 7.52 (16.55)       | 7.64 (16.80)                           | 7.74 (17.03)         |                                                           |
| FSC   | 5.5 to 7.5  | 7.85 (17.27)       | 7.97 (17.52)                           | 8.08 (17.78)         | (0.33)                                                    |
|       |             |                    |                                        |                      | <ul> <li>Integrated 24 V PSU:<br/>+0.55 (1.21)</li> </ul> |

| G115D<br>wall-moun-<br>ted con- | Rated power          | Typical current consumption<br>from the 24 V power supply, un-<br>switched 1) 3)Typical current consump<br>from the AS-i cable 2) 3) |             | •            |             |  |
|---------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-------------|--|
| verter                          |                      | PROFINET var-                                                                                                                        | I/O variant | AS-i variant |             |  |
|                                 |                      | iant                                                                                                                                 |             | Yellow cable | Black cable |  |
| FSA                             | 0.37 kW to 1.5<br>kW | 290 mA                                                                                                                               | 250 mA      | 90 mA        | 200 mA      |  |
| FSB                             | 2.2 kW to 3 kW       | 290 mA                                                                                                                               | 250 mA      | 90 mA        | 200 mA      |  |
|                                 | 4 kW                 | 550 mA                                                                                                                               | 510 mA      | 90 mA        | 460 mA      |  |
| FSC                             | 5.5 kW to 7.5 kW     | 580 mA                                                                                                                               | 540 mA      | 90 mA        | 490 mA      |  |

# Typical current consumption on 24 V DC power supply

<sup>1)</sup> The typical current consumption does not include the consumption of connected sensors at DI 0 to DI 3 from the unswitched 24 V power supply and the consumption of connected sensors/actors at DIO 24/ DIO 25 from the switched 24 V power supply.

<sup>2)</sup> The typical current consumption does not include the consumption of connected sensors at DI 0 to DI 3 from the yellow cable and the consumption of connected sensors/actors at DIO 24/DIO 25 from the black cable.

<sup>3)</sup> The current consumption for digital inputs DI 0 ~ DI 3 is max. 200 mA in total. The current consumption for digital inputs DI 24 and DI 25 (when DIO 24/DIO 25 is configured as DI) is max. 200 mA in total, and the current consumption for digital outputs DO 24 and DO 25 (when DIO 24/DIO 25 is configured as DO) is max. 500 mA in total.

# Standby currents

| G115D wall-mounted converter |                   | Standby current (mA) |                                                 |              |              |              |              |  |  |
|------------------------------|-------------------|----------------------|-------------------------------------------------|--------------|--------------|--------------|--------------|--|--|
|                              |                   |                      | Mains power supply without 24 V DC power supply |              |              |              |              |  |  |
| Frame size                   | Rated power       | 380 V, 50 Hz         | 380 V, 60 Hz                                    | 400 V, 50 Hz | 400 V, 60 Hz | 480 V, 50 Hz | 480 V, 60 Hz |  |  |
| FSA                          | 0.37 kW to 1.5 kW | 136                  | 163                                             | 143          | 171          | 171          | 206          |  |  |
| FSB                          | 2.2 kW to 4 kW    | 172                  | 207                                             | 181          | 217          | 217          | 261          |  |  |
| FSC                          | 5.5 kW to 7.5 kW  | 255                  | 306                                             | 268          | 322          | 321          | 386          |  |  |

| G115D wall-mounted converter |                   | Standby current (mA)                         |              |              |              |              |              |  |
|------------------------------|-------------------|----------------------------------------------|--------------|--------------|--------------|--------------|--------------|--|
|                              |                   | Mains power supply with 24 V DC power supply |              |              |              |              |              |  |
| Frame size                   | Rated power       | 380 V, 50 Hz                                 | 380 V, 60 Hz | 400 V, 50 Hz | 400 V, 60 Hz | 480 V, 50 Hz | 480 V, 60 Hz |  |
| FSA                          | 0.37 kW to 1.5 kW | 168                                          | 195          | 171          | 199          | 189          | 224          |  |
| FSB                          | 2.2 kW to 4 kW    | 204                                          | 239          | 209          | 246          | 235          | 279          |  |
| FSC                          | 5.5 kW to 7.5 kW  | 287                                          | 338          | 296          | 350          | 339          | 404          |  |

# 10.2.4 Technical data of braking resistors

# Requirements for the minimum resistance of braking resistors

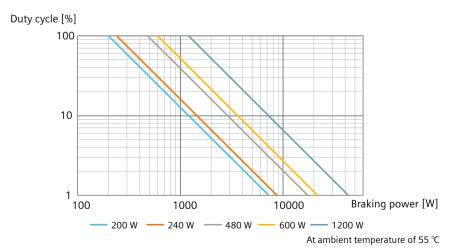
For each frame size, the minimum resistance of braking resistors is required as follows:

| Frame size | Rated power       | Minimum resistance of braking resistors |
|------------|-------------------|-----------------------------------------|
| FSA        | 0.37 kW to 1.5 kW | 200 Ω                                   |
| FSB        | 2.2 kW to 4 kW    | 80 Ω                                    |
| FSC        | 5.5 kW to 7.5 kW  | 40 Ω                                    |

# Technical data of integrated braking resistor

| G115D wall- | mounted converter | Integrated braking resistor |                             |                                  |  |  |
|-------------|-------------------|-----------------------------|-----------------------------|----------------------------------|--|--|
| Frame size  | Rated power       | Resistance                  | Continuous braking<br>power | Peak braking power <sup>1)</sup> |  |  |
| FSA         | 0.37 kW to 1.5 kW | 350 Ω                       | 10 W                        | 100 W                            |  |  |
| FSB         | 2.2 kW to 4 kW    | 175 Ω                       | 10 W                        | 100 W                            |  |  |
| FSC         | 5.5 kW to 7.5 kW  | 88 Ω                        | 20 W                        | 200 W                            |  |  |

<sup>1)</sup> Peak braking power at 10% cycle time of a 120s cycle. For the peak braking power at different duty cycles, refer to the following diagram.




# Technical data of external braking resistor

The external braking resistors are not included in the scope of delivery of the G115D converter. The following optional external braking resistors are available.

|                       | 5D wall-<br>nted con-<br>er | External braking resistor                                 |                                    |                                          |                        |                                                         |                                        |  |  |  |
|-----------------------|-----------------------------|-----------------------------------------------------------|------------------------------------|------------------------------------------|------------------------|---------------------------------------------------------|----------------------------------------|--|--|--|
| Fra<br>me<br>Siz<br>e | Rated pow-<br>er            | Resist-<br>ance<br>(+/-10%)                               | Continu-<br>ous brak-<br>ing power | Peak brak-<br>ing<br>power <sup>1)</sup> | Article number         | Vibra-<br>tion and<br>shock<br>during<br>opera-<br>tion | Sur-<br>round-<br>ing tem-<br>perature |  |  |  |
| FSA                   | 0.37 kW to 1<br>.5 kW       | 1     210 Ω     200 W     1200 W     6SL350       0     0 |                                    | 6SL3501-1BE32-0AA<br>0                   | 0.000                  | -30 °C to<br>+55 °C                                     |                                        |  |  |  |
|                       |                             | 220 Ω                                                     | 240 W                              | 1440 W                                   | 6SL3501-1BE32-4AA<br>0 | accord-<br>ing to EN                                    |                                        |  |  |  |
|                       |                             | 200 Ω                                                     | 480 W                              | 2880 W                                   | 6SL3501-1BE34-8AA<br>0 | 60721-3-<br>3                                           |                                        |  |  |  |
| FSB                   | 2.2 kW to 4<br>kW           | 160 Ω                                                     | 200 W                              | 1200 W                                   | 6SL3501-1BE32-0BA<br>0 |                                                         |                                        |  |  |  |
|                       |                             | 150 Ω                                                     | 240 W                              | 1440 W                                   | 6SL3501-1BE32-4BA<br>0 |                                                         |                                        |  |  |  |
|                       |                             | 150 Ω                                                     | 600 W                              | 3600 W                                   | 6SL3501-1BE36-0BA<br>0 |                                                         |                                        |  |  |  |
| FSC                   | 5.5 kW to 7.<br>5 kW        | 81 Ω                                                      | 600 W                              | 3600 W                                   | 6SL3501-1BE36-0CA<br>0 | 1                                                       |                                        |  |  |  |
|                       |                             | 72 Ω                                                      | 1200 W                             | 7200 W                                   | 6SL3501-1BE41-2CA<br>0 |                                                         |                                        |  |  |  |

<sup>&</sup>lt;sup>1)</sup> Peak braking power at 10% cycle time of a 120s cycle. For the peak braking power at different duty cycles, refer to the following diagram.



# 10.2.5 Load cycles and overload capabilities

Overload capability is the property of the converter to temporarily supply a current that is higher than the rated current to accelerate a load.

# Definitions

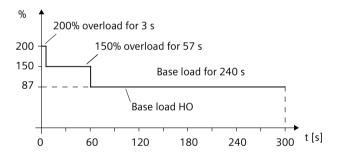
## **Base load**

Constant load between the accelerating phases of the converter

## HO base load input current

Permissible input current for a "High Overload" load cycle

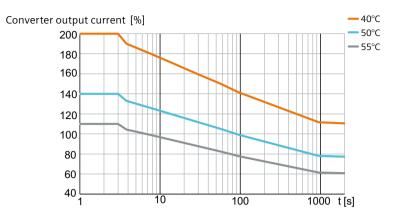
## HO base load output current


Permissible output current for a "High Overload" load cycle

## HO base load power

Rated power based on the HO base load output current

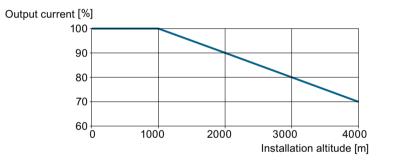
If not specified otherwise, the power and current data in the technical data always refer to a load cycle according to High Overload.


# Permissible converter overload



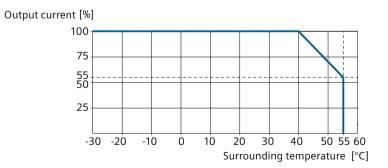
## Note

- The rated ambient temperature for the above load cycles is 40 °C.
- You can set the parameter p0292[0] to a range of 5 °C to 25 °C based on the application.


## I<sup>2</sup>t curve for overload capacity

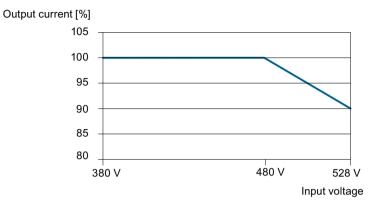


# 10.2.6 Derating data


# 10.2.6.1 Current derating as a function of the installation altitude

The permissible converter output current is reduced above an installation altitude of 1000 m.




## 10.2.6.2 Current derating as a function of the surrounding temperature

The permissible converter output current is reduced when the surrounding air temperature is above 40  $^\circ\!C.$ 



# 10.2.6.3 Current derating as a function of the line voltage

The converter operates at 100% rated output current at a line voltage from 380 V to 480 V. The permissible converter output current is reduced linearly when the line voltage is above 480 V.



# 10.2.6.4 Current derating as a function of the pulse frequency

The permissible converter output current is reduced when the converter is operated at a pulse frequency above 4 kHz.

| Frame size                                                  |             |       | FSA  |      |      |      |      | FSB  |      |       | FSC   |       |
|-------------------------------------------------------------|-------------|-------|------|------|------|------|------|------|------|-------|-------|-------|
| Rated power based on<br>HO (kW)                             |             | 0.37  | 0.55 | 0.75 | 1.1  | 1.5  | 2.2  | 3    | 4    | 5.5   | 7.5   |       |
| Rated                                                       | current (   | A)    | 1.3  | 1.7  | 2.2  | 3.1  | 4.1  | 5.9  | 7.7  | 10.2  | 13.2  | 19    |
|                                                             | ≤4 kHz<br>* | 40 °C | 1.30 | 1.70 | 2.20 | 3.10 | 4.10 | 5.90 | 7.70 | 10.20 | 13.20 | 19.00 |
| N                                                           | *           | 50 °C | 0.91 | 1.19 | 1.54 | 2.17 | 2.87 | 4.13 | 5.39 | 7.14  | 9.24  | 13.30 |
| Output current (A) for the PWM frequency of 2 kHz to 16 kHz |             | 55 °C | 0.72 | 0.94 | 1.21 | 1.71 | 2.26 | 3.25 | 4.24 | 5.61  | 7.26  | 10.45 |
| 16                                                          | 6 kHz       | 40 °C | 1.11 | 1.45 | 1.87 | 2.64 | 3.49 | 5.02 | 6.55 | 8.67  | 11.22 | 16.15 |
| (Hz 1                                                       |             | 50 °C | 0.77 | 1.01 | 1.31 | 1.84 | 2.44 | 3.51 | 4.58 | 6.07  | 7.85  | 11.31 |
| f 2 k                                                       |             | 55 °C | 0.61 | 0.79 | 1.03 | 1.45 | 1.92 | 2.76 | 3.60 | 4.77  | 6.17  | 8.88  |
| c y o                                                       | 8 kHz       | 40 °C | 0.91 | 1.19 | 1.54 | 2.17 | 2.87 | 4.13 | 5.39 | 7.14  | 9.24  | 13.30 |
| luen                                                        |             | 50 °C | 0.64 | 0.83 | 1.08 | 1.52 | 2.01 | 2.89 | 3.77 | 5.00  | 6.47  | 9.31  |
| freq                                                        |             | 55 °C | 0.50 | 0.65 | 0.85 | 1.19 | 1.58 | 2.27 | 2.96 | 3.93  | 5.08  | 7.32  |
| MM                                                          | 10 kHz      | 40 °C | 0.78 | 1.02 | 1.32 | 1.86 | 2.46 | 3.54 | 4.62 | 6.12  | 7.92  | 11.40 |
| he P                                                        |             | 50 °C | 0.55 | 0.71 | 0.92 | 1.30 | 1.72 | 2.48 | 3.23 | 4.28  | 5.54  | 7.98  |
| or tl                                                       |             | 55 °C | 0.43 | 0.56 | 0.73 | 1.02 | 1.35 | 1.95 | 2.54 | 3.37  | 4.36  | 6.27  |
| (A) 1                                                       | 12 kHz      | 40 °C | 0.65 | 0.85 | 1,10 | 1.55 | 2.05 | 2.95 | 3.85 | 5.10  | 6.60  | 9.50  |
| ent                                                         |             | 50 °C | 0.46 | 0.60 | 0.77 | 1.09 | 1.44 | 2.07 | 2.70 | 3.57  | 4.62  | 6.65  |
| curr                                                        |             | 55 °C | 0.36 | 0.47 | 0.61 | 0.85 | 1.13 | 1.62 | 2.12 | 2.81  | 3.63  | 5.23  |
| put                                                         | 14 kHz      | 40 °C | 0.59 | 0.77 | 0.99 | 1.40 | 1.85 | 2.66 | 3.47 | 4.59  | 5.94  | 8.55  |
| Out                                                         |             | 50 °C | 0.41 | 0.54 | 0.69 | 0.98 | 1.29 | 1.86 | 2.43 | 3.21  | 4.16  | 5.99  |
|                                                             |             | 55 °C | 0.32 | 0.42 | 0.54 | 0.77 | 1.01 | 1.46 | 1.91 | 2.52  | 3.27  | 4.70  |
|                                                             | 16 kHz      | 40 °C | 0.52 | 0.68 | 0.88 | 1.24 | 1.64 | 2.36 | 3.08 | 4.08  | 5.28  | 7.60  |
|                                                             |             | 50 °C | 0.36 | 0.48 | 0.62 | 0.87 | 1.15 | 1.65 | 2.16 | 2.86  | 3.70  | 5.32  |
|                                                             |             | 55 °C | 0.29 | 0.37 | 0.48 | 0.68 | 0.90 | 1.30 | 1.69 | 2.24  | 2.90  | 4.18  |

The pulse frequency reduces automatically based on the heatsink temperature.

\* Factory setting: 4 kHz

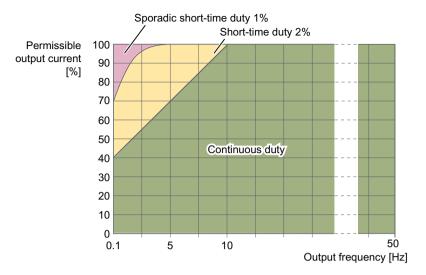
# 10.2.6.5 Derating of motor cable length based on pulse frequency and surrounding temperature

The permissible motor cable length are dependent upon the particular cable type, the pulse frequency that has been selected and the surrounding temperature.

| G115D wall-mounted convert-<br>er |                       | Maximum length of motor cable - m (ft) |          |          |       |         |  |  |
|-----------------------------------|-----------------------|----------------------------------------|----------|----------|-------|---------|--|--|
| Frame                             | Rated power           | ≤4 kHz                                 | 6 kHz to |          |       |         |  |  |
| size                              |                       | 40 °C to 55 °C                         | 40 °C    | 45 °C    | 48 °C | 55 °C   |  |  |
| Mains su                          | pply voltage @ 3 AC 4 | 00 V, 50 Hz                            |          |          |       |         |  |  |
| FSA                               | 0.37 kW to 1.5 kW     | 15 (49.2)                              |          | 5 (16.4) |       | 3 (9.8) |  |  |
| FSB                               | 2.2 kW to 4 kW        |                                        |          |          |       |         |  |  |
| FSC                               | 5.5 kW to 7.5 kW      | 15 (49.2)                              |          |          |       |         |  |  |
| Mains su                          | pply voltage @ 3 AC 4 | 80 V, 50 Hz                            |          |          |       |         |  |  |
| FSA                               | 0.37 kW to 1.5 kW     | 15 (49.2)                              | 7 (23.0) | 5 (16.4) |       | 3 (9.8) |  |  |
| FSB                               | 2.2 kW to 4 kW        |                                        | 1        |          |       |         |  |  |
| FSC                               | 5.5 kW to 7.5 kW      | 15 (49.2)                              |          |          |       |         |  |  |

# 10.3 Low frequency operation

The converter can only be operated with reduced output current at low output frequencies.


# NOTICE

## Reduced converter service life as a result of overheating

Loading the converter with a high output current and at the same time with a low output frequency can cause the current-conducting components in the converter to overheat. Excessively high temperatures can damage the converter or reduce the converter service life.

- Never operate the converter continuously with an output frequency = 0 Hz.
- Only operate the converter in the permissible operating range.

## 10.5 Electromagnetic compatibility of the converter



- Continuous operation (green area in the figure) Operating state that is permissible for the complete operating time.
- Short-time operation (yellow area in the figure) Operating state that is permissible for less than 2% of the total operating time.
- Sporadic short-time operation (red area in the figure) Operating state that is permissible in very short and seldom operating conditions for less than 1% of the total operating time.

# 10.4 Data regarding the power loss in partial load operation

## Note

This product is covered by the regulation (EU) 2019/1781; however, according to Article 2, (3) a), the SINAMICS G115D Motor Mounted drive is a motor-integrated drive and therefore no efficiency requirements apply. According to Article 2, (2) b), the geared motor for the SINAMICS G115D Motor Mounted drive is a motor with an integrated variable speed drive and therefore no efficiency requirements apply.

You can find data regarding power loss in partial load operation in the Internet:

📢 Partial load operation (<u>https://support.industry.siemens.com/cs/ww/en/view/94059311</u>)

# 10.5 Electromagnetic compatibility of the converter

EMC (electromagnetic compatibility) means that the devices function satisfactorily without interfering with other devices and without being disrupted by other devices. EMC applies when the emitted interference (emission level) and the interference immunity are matched with each other.

The product standard IEC/EN 61800-3 describes the EMC requirements placed on "Variable-speed drive systems".

A variable-speed drive system (or Power Drive System PDS) consists of the converter as well as the associated electric motors and encoders including the connecting cables.

The driven machine is not part of the drive system.

## Note

## PDS as component of machines or systems

When you install PDS into machines or systems, additional measures may be required so that the product standards of these machines or systems is complied with. The machine or system builder is responsible for taking these measures.

## Overview of environments and categories

## Environments

IEC/EN 61800-3 makes a distinction between the "first environment" and "second environment" - and defines different requirements for these environments.

## • First environment

Residential buildings or locations at which the PDS is directly connected to a public low-voltage supply without intermediate transformer.

#### • Second environment

An environment that includes all other establishments which are not connected directly to a public low-voltage line supply.

#### Categories

Category C1

Power Drive System (PDS) of rated voltage less than 1000 V intended for use in the first (residential) environment.

Category C2

Power Drive System (PDS) of rated voltage less than 1000 V, which is neither a plug-in device nor a movable device, and when used in the first environment, is only intended to be installed and commissioned by a professional.

Category C3

Power Drive System (PDS) of rated voltage less than 1000 V intended for use in the second (industrial) environment and not intended for use within the first (residential) environment.

## Second environment - category C2

## Conducted and radiated interference emissions

The converters meet the limit values of IEC 61800-3 Category C2 with regard to conducted and radiated interference emissions under the following conditions:

- EMC compliant installation and configuration by qualified technician
- Operation on TN or TT line supply with grounded neutral point
- Permissible motor cable length
   Maximum permissible cable length (Page 70)

10.6 Protecting persons from electromagnetic fields

- Shielded motor cable with low capacitance
- Shielded external braking resistor cable with low capacitance
- Pulse frequency ≤ factory setting
- Converters with integrated C2 line filter

#### Note

The SINAMICS G115D converter is designed for operation in the second environment (industrial area) and may not be used in the first environment (residential area) unless the appropriate noise suppression measures have been adopted.

## Note

A power drive system consisting of multiple units connected together in daisy-chain may require further measures to meet EMC requirements.

## Harmonic currents

| Frame Typical Harmonic current (% of rated input current) at U <sub>K</sub> 1 % |       |       |      |      |      |      |      |      |
|---------------------------------------------------------------------------------|-------|-------|------|------|------|------|------|------|
| size                                                                            | 5th   | 7th   | 11th | 13th | 17th | 19th | 23rd | 25th |
| FSA                                                                             | 15.65 | 11.65 | 7.18 | 6.19 | 4.50 | 4.30 | 3.12 | 3.53 |
| FSB                                                                             | 16.79 | 12.36 | 7.52 | 6.75 | 4.79 | 4.56 | 3.30 | 3.65 |
| FSC                                                                             | 18.45 | 13.30 | 8.20 | 7.29 | 5.23 | 5.07 | 3.85 | 3.93 |

#### Note

Units installed within the category C2 (domestic) environment require supply authority acceptance for connection to the public low-voltage power supply network. Please contact your local supply network provider.

Units installed within the category C3 (industrial) environment do not require connection approval.

# 10.6 Protecting persons from electromagnetic fields

## Overview

Protection of workers from electromagnetic fields is specified in the European EMF Directive 2013/35/EU. This directive is implemented in national law in the European Economic Area (EEA). Employers are obligated to design workplaces in such a way that workers are protected from impermissibly strong electromagnetic fields.

To this end, assessments and/or measurements must be performed for workplaces.

## Precondition

- 1. The laws for protection from electromagnetic fields in force in individual EU member states can go beyond the minimum requirements of the EMF Directive 2013/35/EU and always take precedence.
- 2. The ICNIRP 2010 limits for the workplace are the basis for the assessment.
- 3. The 26th BImSchV (German Federal Emission Protection Regulation) defines 100  $\mu$ T (RMS) for the assessment of active implants. According to Directive 2013/35/EU, 500  $\mu$ T (RMS) at 50 Hz is applicable here.
- 4. Compliance with the limit values was assessed for the following frequencies:
  - Line frequency 47 Hz to 63 Hz
  - Pulse frequency, for example 4/8/16 kHz and multiples thereof, assessed up to a maximum of 100 kHz
- 5. The routing of power cables has a significant impact on the electromagnetic fields that occur. Install and operate the components inside metallic cabinets in compliance with the documentation and use shielded motor cables.
   EMC installation guidelines (Page 51)

# Description

The following information regarding electromagnetic fields relates solely to converters supplied by Siemens.

The converters are normally used in machines. The assessment and testing is based on DIN EN 12198.

The indicated minimum distances apply to the head and complete torso of the human body. Shorter distances are possible for extremities.

|                                    | Individuals without active implants | Individuals with active implants                                  |
|------------------------------------|-------------------------------------|-------------------------------------------------------------------|
| Minimum distances to the converter | Forearm length (approx. 35 cm)      | Must be separately assessed depend-<br>ing on the active implant. |

10.6 Protecting persons from electromagnetic fields

# Additional information on the SIMOGEAR geared

# motor

11

# 11.1 General information geared motor with SINAMICS G115D Motor Mounted / Wall Mounted

# 11.1.1 Obligations of the user

## Comply with the following safety instructions:

Comply with the notes on the rating plates attached to the geared motor. The rating plates must be kept free from paint and dirt at all times. Replace any missing rating plates.

In the event of changes during operation, switch off the drive unit immediately.

When removing protective equipment, keep fasteners in a safe place. Re-attach previously removed protective equipment before commissioning.

Collect and dispose of used oil in accordance with regulations. Immediately remove any oil spills with an oil-binding agent.

Do not carry out any welding work on the geared motor. Do not use the geared motor as a grounding point for welding operations.

Equipotential bonding in accordance with applicable regulations and directives must be carried out by electrotechnology specialists.

Do not use high-pressure cleaning equipment or sharp-edged tools to clean the geared motor.

Comply with the permissible tightening torque of the fixing screws.

Replace damaged bolts with new screws of the same property and strength class.

Siemens AG accepts the warranty only for original spare parts.

The manufacturer who installs the geared motors in a plant must include the regulations contained in the operating instructions in its own operating instructions.

# 11.1.2 Particular types of hazards

# 

## Extreme surface temperatures

Hot surfaces over +55 °C pose a burn risk.

Cold surfaces below 0 °C pose a risk of damage due to freezing.

Do not touch the gearbox without protection.

11.1 General information geared motor with SINAMICS G115D Motor Mounted / Wall Mounted

# M WARNING

## Hot, escaping oil

Before starting any work wait until the oil has cooled down to below +30 °C.

# MARNING

## Poisonous vapors when working with solvents

Avoid breathing in vapors when working with solvents.

Ensure adequate ventilation.

# M WARNING

## Risk of explosion when working with solvents

Ensure adequate ventilation.

Do not smoke!

# 🕂 WARNING

## Risk of eye injury

Rotating parts can throw off small foreign particles such as sand or dust.

Wear protective eyewear!

In addition to the prescribed personal protection gear, also wear suitable protective gloves and safety glasses.

# 11.1.3 Rating plate

The rating plate on the gearbox or geared motor is of coated aluminum foil. The rating plate is glued using a special masking film. The film ensures permanent resistance to UV radiation and media of all kinds, such as oils, greases, salt water and cleaning agents.

The adhesive and material ensure firm adhesion and long-term readability throughout the operating temperature range of the gearbox and geared motor.

The edges of the rating plate are paint-finished to match the color of the gearbox or motor to which it is affixed.

# 11.1.4 Surface treatment

## **11.1.4.1** General information on surface treatment

All paint finishes are sprayed on.

## MARNING 🔨

### Danger due to electrostatic discharge

For paint finishes in explosion group III, the paint can be electrostatically charged as a result of intensive dust turbulence or processes with high levels of electrostatic charging.

Risk of explosion as a result of processes with high levels of electrostatic charging

Minimize the risk of electrostatic charging by applying effective measures according to IEC 60079-32-1.

### NOTICE

### Failure of the external protection

If the paint finish is damaged, the geared motor may corrode.

Do not damage the paint finish.

### Note

Information about the ability to be repainted does not guarantee the quality of the paint product supplied by your supplier.

Only the paint manufacturer is liable for the quality and compatibility.

### Note

C1 paints are not suitable for ambient air temperatures below -20 °C.

## 11.1.4.2 Painted version

The corrosion protection system is classified according to the corrosiveness categories in DIN EN ISO 12944-2.

| Paint system                                | Description                                                                                           |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| Corrosiveness category C1, unpainted for ge | earbox and motor housings made of aluminum                                                            |  |  |
| -                                           | Indoor installation                                                                                   |  |  |
|                                             | <ul> <li>Heated buildings with neutral atmospheres</li> </ul>                                         |  |  |
|                                             | <ul> <li>Resistance to greases and some resistance to mineral<br/>oils, aliphatic solvents</li> </ul> |  |  |
|                                             | • Standard                                                                                            |  |  |

| <b>TIL 44 4</b> | <b>B</b> 1 1       | •               |            |
|-----------------|--------------------|-----------------|------------|
| Table 11-1      | Paint according to | CORROCIVANACC   | catonorioc |
|                 |                    | J CONTOSIVENESS | categones  |
|                 |                    |                 |            |

# Additional information on the SIMOGEAR geared motor

## 11.1 General information geared motor with SINAMICS G115D Motor Mounted / Wall Mounted

| Paint system                                              | Description                                                                                                                                                  |  |  |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Corrosiveness category C1 for normal environmental stress |                                                                                                                                                              |  |  |  |  |
| 1-component hydro paint, top coat                         | Indoor installation                                                                                                                                          |  |  |  |  |
|                                                           | Heated buildings with neutral atmospheres                                                                                                                    |  |  |  |  |
|                                                           | • Resistance to greases and some resistance to mineral                                                                                                       |  |  |  |  |
|                                                           | oils, aliphatic solvents                                                                                                                                     |  |  |  |  |
|                                                           | Standard paint for gearbox housings made of cast iron                                                                                                        |  |  |  |  |
| Corrosiveness category C2 for low environn                |                                                                                                                                                              |  |  |  |  |
| 2-component - polyurethane top coat                       | Indoor and outdoor installation                                                                                                                              |  |  |  |  |
|                                                           | • Unheated buildings with condensation, production areas with low humidity, e.g. warehouses and sports facilities                                            |  |  |  |  |
|                                                           | Atmospheres with little contamination, mostly rural areas                                                                                                    |  |  |  |  |
|                                                           | • Resistance to greases, mineral oils and sulfuric acid (10%), caustic soda (10%) and some resistance to aliphatic solvents                                  |  |  |  |  |
| Corrosiveness category C3 for medium envi                 | ronmental stress                                                                                                                                             |  |  |  |  |
| 2-component epoxy zinc phosphate base                     | Indoor and outdoor installation                                                                                                                              |  |  |  |  |
| coat,<br>2-component polyurethane top coat                | <ul> <li>Production areas with high humidity and some air con-<br/>tamination, e.g. food production areas, dairies, brew-<br/>eries and laundries</li> </ul> |  |  |  |  |
|                                                           | Urban and industrial atmospheres, moderate contami-<br>nation from sulfur dioxide, coastal areas with low salt<br>levels                                     |  |  |  |  |
|                                                           | • Resistance to greases, mineral oils, aliphatic solvents, sulfuric acid (10 %), caustic soda (10 %)                                                         |  |  |  |  |
| Corrosiveness category C4 for high environ                | mental stress                                                                                                                                                |  |  |  |  |
| 2-component epoxy zinc phosphate base                     | Indoor and outdoor installation                                                                                                                              |  |  |  |  |
| coat,<br>2-component polyurethane top coat                | • Chemical plants, swimming pools, wastewater treat-<br>ment plants, electroplating shops, and boathouses<br>above seawater                                  |  |  |  |  |
|                                                           | Industrial areas and coastal areas with moderate salt levels                                                                                                 |  |  |  |  |
|                                                           | • Resistance to greases, mineral oils, aliphatic solvents, sulfuric acid (10 %), caustic soda (10 %)                                                         |  |  |  |  |
| Corrosiveness category C5 for very high env               | vironmental stress                                                                                                                                           |  |  |  |  |
| 2-component epoxy zinc phosphate base                     | Indoor and outdoor installation                                                                                                                              |  |  |  |  |
| coat,<br>2-component polyurethane intermediate<br>coat,   | • Buildings and areas with almost constant condensation and high contamination, e.g. malt factories and aseptic                                              |  |  |  |  |
| 2-component polyurethane top coat                         | areas                                                                                                                                                        |  |  |  |  |
|                                                           | • Industrial areas with high humidity and aggressive at-<br>mosphere, coastal areas and offshore environments<br>with high salt levels                       |  |  |  |  |
|                                                           | • Resistance to greases, mineral oils, aliphatic solvents, sulfuric acid (10 %), caustic soda (20 %)                                                         |  |  |  |  |

In case of corrosiveness category C1, overpainting with a 1-component hydrosystem after prior rubbing down is possible.

In case of corrosiveness categories C2 to C5, overpainting with 2-component polyurethane paint, 2-component epoxide paint and 2-component acrylic paint after prior rubbing down is possible.

## 11.1.4.3 Primed version

| Paint system                                                                                                    | Can be overpainted with                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Unpainted corrosiveness category C1                                                                             |                                                                                                                                                |
| Cast iron parts immersion primed,<br>steel parts primed or zinc-plated,<br>aluminum and plastic parts untreated | <ul> <li>Synthetic paint, synthetic resin paint, oil paint</li> <li>2-component polyurethane paint</li> <li>2-component epoxy paint</li> </ul> |
| Primed according to corrosiveness category C2 G                                                                 |                                                                                                                                                |
| 2-component epoxy zinc phosphate,<br>desired coat thickness 60 μm                                               | <ul> <li>2-component - polyurethane paint</li> <li>2-component - epoxy paint</li> </ul>                                                        |
|                                                                                                                 | <ul> <li>2-component - acrylic paint</li> </ul>                                                                                                |
|                                                                                                                 | Acid-hardening paint                                                                                                                           |
| Primed according to corrosiveness category C4 G                                                                 |                                                                                                                                                |
| 2-component epoxy zinc phosphate,                                                                               | 2-component - polyurethane paint                                                                                                               |
| desired coat thickness 90 µm                                                                                    | 2-component - epoxy paint                                                                                                                      |
|                                                                                                                 | 2-component - acrylic paint                                                                                                                    |
|                                                                                                                 | Acid-hardening paint                                                                                                                           |

 Table 11-2
 Primer according to corrosiveness category

# 11.1.5 Incoming goods

## NOTICE

### Transport damage impairs correct functioning

Do not commission faulty gearboxes or geared motors.

#### Note

Do not open or damage parts of the packaging that preserve the product.

#### Note

Check that the technical specifications are in accordance with the purchase order.

Inspect the delivery immediately on arrival for completeness and any transport damage.

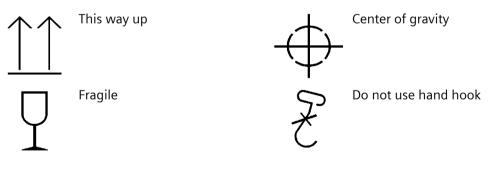
Notify the freight company of any damage caused during transport immediately (this is the only way to have damage rectified free of charge). Siemens AG will not accept any claims relating to items missing from the delivery and which are submitted at a later date.

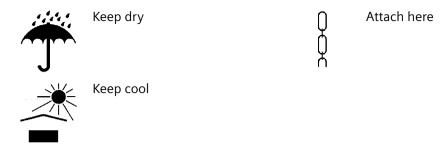
The gearbox or geared motor is delivered in a fully assembled condition. Additional items are sometimes delivered packaged separately.

The products supplied are listed in the dispatch papers.

## 11.1.6 General information on transport

#### NOTICE


#### The use of force will damage the gearbox or geared motor


Transport the gearbox or geared motor carefully. Avoid knocks.

Before putting the drive into operation, remove any transport fixtures and keep them safe or render them ineffective. You can then use them again for transporting further items or you can apply them again.

Different forms of packaging may be used, depending on the size of the gearbox or geared motor and the method of transport. Unless contractually agreed otherwise, the seaworthy packaging complies with HPE Packaging Guidelines (Bundesverband Holzpackmittel Paletten Exportverpackungen e.V., the German Federal Association for wooden packaging, pallets, and export packaging).

Note the symbols which appear on the packaging. These have the following meanings:





## 11.1.7 Unpacking

### NOTICE

## Transport damage impairs the correct function of the geared motor

Never commission faulty or defective geared motors.

Check the geared motor for completeness and for damage. Report any missing parts or damage immediately.

Remove and dispose of the packaging material and transport equipment in compliance with regulations.

# 11.1.8 General information concerning the installation

## MARNING WARNING

## Assembly work with the system under load

Under load, the system can start or reverse in an uncontrolled fashion.

The entire system must be load-free so that there is no danger during this work.

## NOTICE

## Destruction caused by welding

Welding destroys the geared parts and bearings.

Do not weld on the gearbox. The gearbox must not be used as a grounding point for welding operations.

#### NOTICE

#### Overheating caused by solar radiation

Overheating of the geared motor due to exposure to direct sunlight.

Provide suitable protective equipment such as covers or roofs. Prevent heat accumulation.

#### NOTICE

### Malfunction resulting from foreign objects

The operator must ensure that no foreign objects impair the function of the gearbox.

### NOTICE

#### Damaged components impair the correct function of the gearbox

If any components are damaged, the correct function of the gearbox will no longer be ensured.

Do not install any damaged gearbox components.

#### NOTICE

#### Violation of the maximum permissible oil sump temperature

The oil sump temperature will be exceeded if the temperature monitoring equipment is incorrectly set.

An alarm must be output when the maximum permissible oil sump temperature is reached. The geared motor must be switched off when the maximum permissible temperature is exceeded. The machine will come to a standstill if the geared motor is shut down.

#### Note

Use headless screws with property class 8.8 or higher to fasten the motor.

Exercise particular care during mounting and installation. The manufacturer cannot be held liable for damage caused by incorrect mounting and installation.

Make sure that there is sufficient space around the gearbox or geared motor for mounting, maintenance and repair.

On geared motors with a fan, leave sufficient free space for air to enter. Observe the installation conditions for the geared motor.

Provide adequate lifting gear at the start of mounting and installation work.

Observe the mounting position specified on the rating plate. This ensures that it will be provided with the correct quantity of lubricant.

Use all the fastening means that have been assigned to the particular mounting position and mounting type.

Cap bolts cannot be used in some cases due to a lack of space. In such cases, please contact Technical Support, specifying the type of gearbox.

# 11.1.9 Installation notes

## NOTICE

### Impermissible housing loadings when unevenness present

Ensure that the housing feet and flanges are screwed together without distortion.

The foundation structure must be low-vibration, level and torsionally rigid. The evenness of the mounting surface for gearboxes in foot and flange design must be according to DIN ISO 2768-2. Max. deviations are to be taken from the tolerance class K.

Thoroughly remove any dirt from the foundation and the screw mounting surface of the gearbox.

### NOTICE

### Impermissible external forces

No additional external forces resulting from customer-specific attachments, support of other components on the gearbox or geared motor are permitted.

The installation of original attachments (oil expansion unit, cover hoods, etc.) and the resulting forces are permitted.

## Prerequisites for smooth, vibration-free running

- Stable foundation design
- Precise alignment of the machine
- Correct balancing of the parts to be mounted on the shaft extension
- Compliance with vibration severity values according to ISO 20816-1

### Vibration severity

Due to the influencing variables listed below, the vibration response of the system at the location of use can lead to increased vibration severity on the drive unit:

- Transmission elements
- Installation conditions
- Alignment and installation
- Effects of external and internal oscillation

The vibration severity values specified in accordance with ISO 20816-1 must not be exceeded at any point on the surface of the drive. This ensures problem-free operation and a long service life.

### Maximum permissible vibration severity

Observe the values for the maximum permissible radial and axial oscillation vibration severity in the following table. Radial/axial refers to the motor axes.

### Maximum permissible radial vibration levels

| Vibration frequency | Vibration value                                        |
|---------------------|--------------------------------------------------------|
| < 6.3 Hz            | Vibration displacement <sub>s</sub> $\leq$ 0.16 mm     |
| 6.3 Hz to 250 Hz    | Vibration velocity $v_{rms} \le 4.5 \text{ mm/s}$      |
| > 250 Hz            | Vibration acceleration $a_{peak} \le 10 \text{ m/s}^2$ |

### Maximum permissible axial vibration severity

| Vibration velocity                                | Vibration acceleration                                 |
|---------------------------------------------------|--------------------------------------------------------|
| Vibration velocity $v_{rms} \le 4.5 \text{ mm/s}$ | Vibration acceleration $a_{peak} \le 10 \text{ m/s}^2$ |

### **Resonant frequencies**

Resonance can occur in the speed range of the geared motor depending on the machine to be driven.

Operation in resonance causes increased noise and vibration levels.

Adherence to the maximum permissible vibration severity is always required.

Operation in the resonant frequency leads to a reduced service life of the geared motor, irrespective of adherence to the maximum vibration severity.

Continuous operation in the resonant frequency must be avoided.

# 11.1.10 Thread sizes and tightening torques for fastening bolts

The general tolerance for the tightening torque is 10%. The tightening torque is based on a friction coefficient of  $\mu = 0.14$ .

| Thread size | Tightening torque for property class |       |       |  |
|-------------|--------------------------------------|-------|-------|--|
|             | 8.8                                  | 10.9  | 12.9  |  |
|             | Nm                                   | Nm    | Nm    |  |
| M4          | 3                                    | 4     | 5     |  |
| M5          | 6                                    | 9     | 10    |  |
| M6          | 10                                   | 15    | 18    |  |
| M8          | 25                                   | 35    | 41    |  |
| M10         | 50                                   | 70    | 85    |  |
| M12         | 90                                   | 120   | 145   |  |
| M16         | 210                                  | 295   | 355   |  |
| M20         | 450                                  | 580   | 690   |  |
| M24         | 750                                  | 1 000 | 1 200 |  |
| M30         | 1 500                                | 2 000 | 2 400 |  |
| M36         | 2 500                                | 3 600 | 4 200 |  |

Table 11-3Tightening torques for fixing screws

# 11.1.11 Operation

## CAUTION

Malfunctions and disturbances can cause injuries or damage to the geared motor

In the event of changes in operation, the drive unit must be switched off immediately.

Determine the cause of the fault using the fault table. Remedy faults or have faults remedied.

Check the geared motor during operation for:

- Excessive operating temperature
- Changes in gear noise
- Possible oil leakage at the housing and shaft seals

# 11.1.12 Cleaning the geared motor

### NOTICE

## Dust deposits cause higher housing temperatures

Dust deposits prevent heat radiation.

Keep the geared motor free from dirt and dust.

## NOTICE

## Cleaning with a high-pressure cleaning appliance

Water can penetrate into the geared motor. Seals can become damaged.

Do not use a high-pressure cleaning appliance to clean the geared motor.

Do not use tools with sharp edges.

Switch off the power supply to the drive unit before cleaning it.

## 11.1.13 Inspecting the geared motor

Perform a scheduled inspection of the gearbox once a year in accordance with the possible criteria listed in General notes about maintenance work (Page 516).

Check the geared motor in accordance with the criteria specified in General motor information (Page 449) and General information gearbox (Page 481).

Touch up damaged paintwork carefully and professionally.

## 11.1.14 Disposal

## WARNING

## Incorrect disposal of used oil

Incorrect disposal of used oil is a threat to the environment and health.

After use, oil must be taken to a used oil collection point. The addition of foreign substances such as solvents, brake and cooling fluid is prohibited.

Avoid prolonged contact with the skin.

Empty the used oil from the gearbox. The used oil must be collected, stored, transported and disposed of in accordance with regulations. Do not mix polyglycols with mineral oil. Dispose of polyglycols separately.

Please observe country-specific laws. Under German law, to allow optimal treatment of the oil (§ 4 VI Used Oil), oils with different disposal codes must not be mixed with one another.

Collect and dispose of used oil in accordance with regulations.

Remove oil spillages immediately with an oil-binding agent in compliance with environmental requirements.

Dispose of the housing parts, gears, shafts, and rolling bearings of the geared motor as scrap metal.

Dispose of packaging material in accordance with regulations.

| Type of oil                  | Designation                                                                     | Disposal code |  |
|------------------------------|---------------------------------------------------------------------------------|---------------|--|
| Mineral oil                  | CLP ISO VG220                                                                   | 13 02 05      |  |
| Polyglycols                  | CLP ISO PG VG220,<br>CLP ISO PG VG460,<br>CLP ISO H1 VG100,<br>CLP ISO H1 VG460 | 13 02 08      |  |
| Poly-Alpha-Olefines          | CLP ISO PAO VG68,<br>CLP ISO PAO VG220,<br>CLP ISO PAO VG460                    | 13 02 06      |  |
| Biologically degradable oils | CLP ISO E VG220                                                                 | 13 02 07      |  |

Table 11-4 Disposal codes for gear oils

# 11.1.15 Technical data

# 11.1.15.1 Type designation motor and converter

| Example:                        | LE | 100 | L | Α | 4 | P- | G | 022 | M- | PN- | L16 |
|---------------------------------|----|-----|---|---|---|----|---|-----|----|-----|-----|
| Motor type                      | LE |     |   |   |   |    |   |     |    |     |     |
| Motor frame size                |    | 100 |   |   |   |    |   |     |    |     |     |
| Motor length                    |    |     | L |   |   |    |   |     |    |     |     |
| Performance code letter         |    |     |   | А |   |    |   |     |    |     |     |
| Number of poles                 |    |     |   |   | 4 |    |   |     |    |     |     |
| Efficiency                      |    |     |   |   |   | Р  |   |     |    |     |     |
| Prefix G115D                    |    |     |   |   |   |    | G |     |    |     |     |
| Converter power                 |    |     |   |   |   |    |   | 022 |    |     |     |
| Motor Mounted / Wall<br>Mounted |    |     |   |   |   |    |   |     | М  |     |     |
| Communication                   |    |     |   |   |   |    |   |     |    | PN  |     |
| Option                          |    |     |   |   |   |    |   |     |    |     | L16 |

 Table 11-5
 Example of the type designation structure

| Table 11-6 | Type designation code |
|------------|-----------------------|
|            | Type designation code |

| Mo                | tor designatio                             | n                              |  |  |  |
|-------------------|--------------------------------------------|--------------------------------|--|--|--|
|                   | Motor type                                 |                                |  |  |  |
|                   | LE Three-phase induction motor, integrated |                                |  |  |  |
|                   | Size of the m                              | otor                           |  |  |  |
|                   | 100                                        | Motor shaft height             |  |  |  |
|                   | S, M, L                                    | Motor length                   |  |  |  |
|                   | A, B, C Performance code letters           |                                |  |  |  |
| 4 Number of poles |                                            | Number of poles                |  |  |  |
|                   | Special featu                              | res                            |  |  |  |
|                   | E                                          | High efficiency (IE2)          |  |  |  |
|                   | P Premium efficiency (IE3)                 |                                |  |  |  |
|                   | S                                          | Super premium efficiency (IE4) |  |  |  |
| con               | iverter                                    |                                |  |  |  |

|      | G                             | Prefix G115D                                        |
|------|-------------------------------|-----------------------------------------------------|
|      | 022                           | Converter power                                     |
|      | М                             | Motor Mounted                                       |
|      | W                             | Wall Mounted                                        |
|      | Communicat                    | ion                                                 |
|      | 10                            | I/O variant                                         |
|      | ASi                           | ASi version                                         |
|      | PN                            | Profinet version                                    |
|      | - Always "-" for Wall Mounted |                                                     |
| Opt  | ions                          |                                                     |
| L    |                               | Standard brake, world brake                         |
| G    |                               | Enclosed brake                                      |
| Н, Н | łA                            | Manual brake release, lockable manual brake release |

# 11.1.15.2 Gearbox type designation

| Table 11-7 | Example of the type designation structure |
|------------|-------------------------------------------|
|            | Example of the type designation structure |

|              | Main gearbox |   |   |    |
|--------------|--------------|---|---|----|
|              | F            | D | F | 89 |
| Example:     |              |   |   |    |
| Gearbox type | F            |   |   |    |
| Stage        |              | D |   |    |
| Туре         |              |   | F |    |
| Frame size   |              |   |   | 89 |

Table 11-8Type designation code

| Gearbox type |                            |
|--------------|----------------------------|
| (-)          | Helical gearbox            |
| F            | Parallel shaft gearbox     |
| В            | Bevel gearbox, two-stage   |
| К            | Bevel gearbox, three-stage |
| С            | Helical worm gearbox       |
| Stage        |                            |
| (-)          |                            |
| E            | Single-stage               |
| Z            | Two-stage                  |
| D            | Three-stage                |
| Туре         |                            |

| Shaft  |                                       |
|--------|---------------------------------------|
| (-)    | Solid shaft                           |
| А      | Hollow shaft                          |
| Moun   | ting type gearbox                     |
| (-)    | Foot-mounted design                   |
| В      | Foot / flange-mounted design          |
| F      | Flange-mounted design (A type)        |
| Z      | Housing flange (C type)               |
| D      | Torque arm                            |
| G      | Flange (A type) opposite output shaft |
| Conne  | ection                                |
| (-)    | Parallel key                          |
| S      | Shrink disk                           |
| Т      | Hollow shaft with splines             |
| R.     | SIMOLOC assembly system               |
| Specia | l features                            |
| W      | Reduced-backlash version              |

## 11.1.15.3 General technical data

## 🕂 WARNING

### Exceeding the power limits

Exceeding the power limits (max. speeds, max. torques, etc.) of the gearbox or motor can cause damage to the geared motor.

The permissible operating ranges and power limits of the motor and gearbox must be observed.

The max. speeds and torques shown indicate the mechanical limits of the gearbox. Depending on the application, thermal limits must also be taken into account. In applications with long max. speed components, high pressure build-up may occur in the gearbox, which can cause damage to the gearbox (e.g. leakage).

The most important technical data appears on the rating plate of the gearboxes and geared motors.

This data, together with the contractual agreements for the geared motors, determines the limits of intended use.

In the case of geared motors, a rating plate attached to the motor usually indicates the data for the entire drive.

In certain cases separate rating plates are attached to the gearbox and the motor. Here, the operating ranges and power limits on all rating plates must be observed.

The degree of protection according to EN 60034-5 (IEC 60034-5) specified on the nameplates only applies to the motor of the unit.

When selecting higher degrees of protection, the equipping on the gearbox side should be taken into account (seals, vents).

## 11.1.15.4 Rating plate for geared motors with SINAMICS G115D Motor Mounted

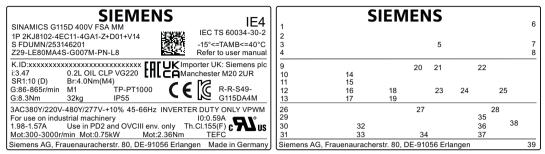



Figure 11-1 Example of a rating plate for geared motors with SINAMICS G115D Motor Mounted

- 1 Equipment name
- 2 Article number, MLFB Dxx - MLFB option of the mounting position Vxx - MLFB option for the converter connector
- 3 Factory identification number (FID)
- 4 Type designation
- 5 Data matrix code
- 6 IE class (according to IEC TS 60034-30-2)
- 7 Permissible ambient temperature
- 8 Reference to operating instructions
- 9 Customer ID
- 10 Transmission ratio i
- 11 Speed range SR
- 12 Gearbox output speed range in rpm
- 13 Geared motor rated output torque in Nm
- 14 Oil quantity in I, oil type, oil viscosity ISO VG class according to DIN 51519 / ISO 3448
- 15 M4 braking torque in Nm, cyclic duration factor
- 16 Mounting position
- 17 Weight in kg
- 18 Thermal motor protection
- 19 Degree of protection acc. to IEC 60034-5
- 20 EAC approval logo
- 21 UKCA approval logo
- 22 UK importer address
- 23 CE approval logo
- 24 KC approval logo
- 25 KC registration number
- 26 Input phase count and input voltage range of the converter
- 27 Input frequency range of the converter f in Hz
- 28 Operating mode
- 29 Specification of rated conditions
- 30 Rated input current of the converter in A

- 31 Rated speed range of the motor in rpm
- 32 Pollution degree and overvoltage category
- 33 Rated motor output in kW
- 34 Rated motor torque in Nm
- 35 Converter standstill current I0
- 36 Temperature class Th. Cl.
- 37 Ventilation type
- 38 cURus approval logo
- 39 Manufacturer's address and country of origin

## 11.1.15.5 Rating plate for geared motors with SINAMICS G115D Wall Mounted

| SIEMENS                                                                                                    | E4 SIEMENS                                                | 5      |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------|
| 1P 2KJ8102-4EC10-0AB1-Z+D01<br>S FDUMN/253146201<br>Z29-LE80MA4S-G005W                                     | 0-2   1<br>0°C   2 4                                      | 6<br>7 |
| K.ID:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                  |                                                           | 20     |
| 3AC 385V 50Hz INVERTER DUTY ONLY V<br>1.44A Th.Cl.155(F) C<br>Mot:300-1500r/min Mot:0.55kW Mot:3.50Nm TEFC | WM 23 24 29 22                                            |        |
| Siemens AG, Frauenauracherstr. 80, DE-91056 Erlangen Made in Ge                                            | hany Siemens AG, Frauenauracherstr. 80, DE-91056 Erlangen | 33     |

Figure 11-2 Example of a rating plate for geared motors with SINAMICS G115D Wall Mounted

- 1 Article number, MLFB Dxx - MLFB option of the mounting position
- 2 Factory identification number (FID)
- 3 Type designation
- 4 Data matrix code
- 5 IE class (according to IEC TS 60034-30-2)
- 6 Ambient temperature
- 7 Reference to operating instructions
- 8 Customer ID
- 9 Transmission ratio i
- 10 Speed range SR
- 11 Gearbox output speed range in rpm
- 12 Geared motor rated output torque in Nm
- 13 Oil quantity in I, oil type, oil viscosity ISO VG class according to DIN 51519 / ISO 3448
- 14 M4 braking torque in Nm, cyclic duration factor
- 15 Mounting position
- 16 Weight in kg
- 17 Thermal motor protection
- 18 Degree of protection acc. to IEC 60034-5
- 19 EAC approval logo
- 20 CE approval logo

- 21 UKCA approval logo
- 22 UK importer address
- 23 Input phase number and rated voltage of the motor
- 24 Operating mode
- 25 Rated motor current in A
- 26 Rated motor speed range in rpm
- 27 Rated motor output in kW
- 28 Rated motor torque in Nm
- 29 Motor standstill (stall) current I0
- 30 Temperature class Th. Cl.
- 31 Ventilation type
- 32 cURus approval logo
- 33 Manufacturer's address and country of origin

## 11.1.15.6 Weight

The weight of the entire geared motor is given in the shipping papers.

The weight is stated on the rating plate of the motor, gearbox or geared motor.

The weight specification refers only to the product in the delivery state.

## 11.1.15.7 Sound energy level

SIMOGEAR geared motors have noise levels below the permissible noise levels defined for gearboxes in VDI guideline 2159 and for motors in IEC 60034-9. Interaction with gearboxes causes the motor noise values  $L_{pfA}$  or  $L_{WA}$  to increase on average by 3 to 5 dB (A).

The circumferential velocity of the motor pinion has a significant influence on the additional gearbox noise level. As a consequence, higher speeds or lower ratios result in higher noise.

SIMOGEAR geared motors provide a decisive advantage here, since the motor plug-on pinion allows transmission ratios of up to 12 in the input stage.

| Code             | Description                                        | Unit   |
|------------------|----------------------------------------------------|--------|
| L <sub>pfA</sub> | A-weighted enveloping surface sound pressure level | dB (A) |
| L <sub>WA</sub>  | Sound power level                                  | dB (A) |

### **External noise**

Noise not generated by the gearbox but emitted from it are not taken into consideration.

Noise emitted by the drive and driven machines or the base are also not taken into consideration. Even when the noise from the gearbox have been transferred there.

# 11.1.16 Spare parts

### 11.1.16.1 Stocking of spare parts

By stocking the most important spare and wearing parts on site, you can ensure that the gearbox or geared motor is ready for use at any time.

### NOTICE

#### Safety impairment caused by inferior products

The installation and/or use of inferior products can have a negative impact on the design characteristics of the geared motor and may consequently impair the active and/or passive safety features of the machine.

Siemens AG states explicitly that only spare parts and accessories supplied by Siemens have been tested and approved by Siemens.

If you do not use original spare parts and original accessories, Siemens AG excludes every liability and warranty.

Siemens AG accepts the warranty only for original spare parts.

Note that special manufacturing and delivery specifications often apply to individual components. All spare parts offered by Siemens AG are state-of-the-art and conform to the latest legal regulations.

Please state the following data when ordering spare parts:

- Serial number shown on the rating plate 2
- Type designation shown on the rating plate ③
- Item number and designation from spare parts list
- Quantity

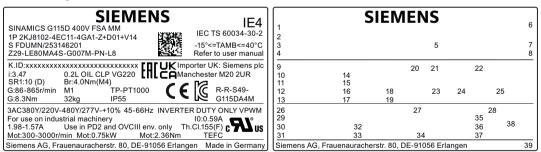



Figure 11-3 Example of a rating plate for geared motors with SINAMICS G115D Motor Mounted

For motors with their own rating plate, the spare parts documentation in the original operating instructions applies.

### 11.1.16.2 Spares on Web

#### Rapid support around the clock - our SIMOGEAR service

Our service is your partner for comprehensive support and innovative services for increasing your productivity. The original parts and manufacturing expertise we offer help you achieve maximum machine availability and productivity. Our proven services therefore contribute to reducing the total cost of ownership for you, as well as to creating sustainable values and solutions.

The technical product lists are provided in Spares on Web (<u>https://www.sow.siemens.com/?</u> <u>lang=en</u>).

| SIEMENS IE4                                                                                                                                                                          | SIEMENS<br>Ingenuity for Life Spares on Web - spare parts for YOU                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| SINAMICS G115D 400V FSA MM<br>1P 2KJ8102-4EC11-4GA1-Z+D01+V14<br>S FDI IMV/253146201<br>15°C=TAMB<                                                                                   | 🚯 English Help + 📷 Contact                                                                  |
| S FDUMN/253146201<br>Z29-LE80MA4S-G007M-PN-L8 -15°<=TAMB<=40°C<br>Refer to user manual                                                                                               | - Q <sub>s</sub> Single Q <sub>s</sub> Multi → Modification of EWN motors III Shopping Cart |
| K.ID:XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX                                                                                                                                            | Article No.: 2KJ8102-4EC11-4GA1-Z+D01                                                       |
| G:86-865r/min M1 TP-PT1000 CE G R-R-S49-<br>G:8.3Nm 32kg IP55 CE G115DA4M                                                                                                            | Serial number: FDUMN/253146201                                                              |
| 3AC380Y/220V-480Y/277V-+10% 45-66Hz INVERTER DUTYONLYVPWM<br>For use on industrial machinery I0:0.59A                                                                                | Options: Options, e.g. A01+B02+C03                                                          |
| 1.98-1.57A Use in PD2 and OVCIII env. only Th.Cl.155(F) C Use<br>Mot:300-3000r/min Mot:0.75kW Mot:2.36Nm TEFC<br>Siemens AG, Frauenauracherstr. 80, DE-91056 Erlangen Made in German | Search Show images                                                                          |
|                                                                                                                                                                                      |                                                                                             |

(1) Article number

2 Serial number

Figure 11-4 Entry of the article and serial number in Spares on Web

### Procedure

- 1. Open the stated link.
- 2. In the field ① "Article No.", enter the article number stated on the rating plate. Example: 2KJ8103-2GF01-3FA1-Z+D01+V02
- 3. In the field (2) "Serial number", enter the serial number stated on the rating plate. Example: FDUE6/8315041301
- 4. You can directly access the operating instructions via "Industry Online Support (SIOS)".
- 5. Use the "Search" function to display the spare parts list.
- 6. The installation positions of the listed spare parts can be determined based on the position numbers specified in column "BKZ" (equipment marking) and the spare part drawings in Chapters Spare parts list, motor (Page 476) and Replacement part lists gearbox (Page 569).

You have opened the spare parts list through Spares on Web.

# 11.2 Specific data motor

# 11.2.1 General motor information

#### Note

Siemens AG does not accept any liability for damage and operational disturbances that result from the non-observance of these operating instructions.

These operating instructions are part of the motor delivery. Store the operating instructions near the motor. Please read the operating instructions prior to handling the motor and observe the information they contain. This is how you ensure safe and disturbance-free operation.

These operating instructions apply to the standard version of the motors for mounting on SIMOGEAR gearbox:

• LE motor, frame sizes 71 to 112 Motor Mounted / 132 Wall Mounted

For a description of the precise designation see Type designation motor and converter (Page 441).

| Table 11-9 Afticle fluttiber coue | Table 11-9 | Article number code |
|-----------------------------------|------------|---------------------|
|-----------------------------------|------------|---------------------|

| Motor                        |   | Article number position |   |   |   |
|------------------------------|---|-------------------------|---|---|---|
|                              | 1 | 2                       | 3 | 4 | 8 |
| Asynchronous motor           | 2 | К                       | J | 8 | 2 |
| Synchronous reluctance motor |   |                         |   |   | 4 |

### Note

In addition to these operating instructions, special contractual agreements and technical documentation apply to a special motor design and the associated supplementary equipment.

Please refer to the other operating instructions supplied with the product.

The described motors correspond to the state-of-the-art at the time these operating instructions were printed.

Siemens AG reserves the right to change individual components and accessory parts in the interest of further development. The changes are designed to improve performance and safety. The significant features are retained. The operating instructions are updated regularly with new contents.

The latest versions of the operating instructions, the declaration of incorporation and the declarations of conformity are available in electronic form in the Industry Online Support (<u>https://support.industry.siemens.com/cs/ww/en/ps/13424/man</u>).

You can find the contact data of your Technical Support in the Database of contacts at Siemens AG (<u>www.siemens.com/yourcontact</u>).

If you have any technical questions contact Technical Support (<u>https://support.industry.siemens.com/cs/ww/en/sc/2090</u>).

Europe and Africa Telephone: +49 (0) 911 895 7222 support.automation@siemens.com

America Telephone: +1 800 333 7421 support.america.automation@siemens.com

Asia / Australia / Pacific Telephone: +86 400 810 4288 support.asia.automation@siemens.com

### Valid operating instructions for SIMOGEAR

- BA 2030 operating instructions for SIMOGEAR gearboxes
- BA 2031 operating instructions for permissible mounting position deviations of SIMOGEAR gearboxes
- BA 2330 operating instructions for LA/LE/LES motors for mounting on SIMOGEAR gearboxes
- BA 2535 operating instructions for SIMOGEAR electric-monorail-gearboxes

## 11.2.2 Use as prescribed

The motors described in these operating instructions have been designed for stationary use in general engineering applications.

They comply with the harmonized standards of the series EN 60034 (VDE 0530). They are not approved for operation in hazardous zones and areas.

Unless otherwise agreed, the motors have been designed for use in plants and equipment in industrial environments.

The motors have been built using state-of-the-art technology and are shipped in an operationally reliable condition. Changes made by users could affect this operational reliability and are forbidden.

### Note

The data on the rating plate assumes an installation altitude of up to 1 000 m above sea level.

The permissible ambient temperature is stamped on the rating plate.

In the case of other ambient temperatures and installation altitudes, contact Technical Support.

The motors have been designed for the application described in Section Technical data (Page 441). Do not operate the motor outside the specified power limit. Other operating conditions must be contractually agreed.

Never use degrees of protection  $\leq$  IP54 outdoors. Air-cooled versions are designed for ambient temperatures of -15 °C to +40 °C as standard and for an installation altitude of up to 1 000 m above sea level. Please note any deviations to the data on the rating plate. Conditions at the location of use must comply with all specifications on the rating plate.

Do not climb on the motor. Do not place any objects on the motor.

# 11.2.3 General technical description

The motor complies with the following regulations:

|  | Table 11-10 | Overview of the standards |
|--|-------------|---------------------------|
|--|-------------|---------------------------|

| Feature                                            | Standard    |
|----------------------------------------------------|-------------|
| Dimensioning and operational behavior              | EN 60034-1  |
| Degree of protection                               | EN 60034-5  |
| Cooling                                            | EN 60034-6  |
| Mounting position according to modular system      | EN 60034-7  |
| Terminal marking and direction of rotation         | EN 60034-8  |
| Noise emission                                     | EN 60034-9  |
| Thermal protection                                 | EN 60034-11 |
| Starting characteristics, rotating electric motors | EN 60034-12 |
| Vibration severity levels                          | EN 60034-14 |
| IEC standard voltages                              | IEC 60038   |
| Safety of machinery                                | EN 60204-1  |

The motor is equipped with grease-lubricated roller bearings. The bearings are permanently lubricated.

The stator winding is designed for temperature class 155 (F).

In the standard version, the rotor has vibration severity level A.

The technical data for the optional monitoring equipment can be viewed in the circuit diagrams, on the rating plate or in the special order documents.

The stator housing and bearing shields are made of die-cast aluminum or cast iron.

The surface of the stator housing is equipped with cooling ribs and a mounted terminal box or motor connector.

# 11.2.4 Cooling

### NOTICE

## Dust deposits prevent heat radiation.

Dust deposits prevent heat radiation and cause a high housing temperature.

Keep the geared motor free from dirt, dust, etc.

The gearbox does not normally require additional cooling. The generously dimensioned housing surface is sufficient for dissipating heat losses where there is free convection. If the housing temperature exceeds a value of +80° C, please contact Technical Support.

The motor is designed to be cooled by means of fins. An external fan draws in the cooling air through the aperture in the fan cover and blows the air over the surface of the stator housing.

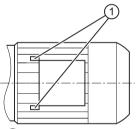
# 11.2.5 Terminal box and application box

The following are contained in the motor terminal box:

- Terminals for the motor (terminal board)
- Terminals for checking equipment
- Connection for brake

The number of available terminals is shown in the circuit diagrams. The circuit diagrams are located in the terminal box.

# 11.2.6 Fastening for suspended transport


# \Lambda WARNING

## Motors may come loose during transport if not adequately secured

Do not use the integrally cast lifting eyes (1) on the motor to transport the geared motors due to the risk of breaking. Only use the integrally cast eyebolts (1) to transport the motor prior to mounting or following removal.

If necessary, use additional, suitable lifting accessories for transport or during installation.

When attaching by a number of chains and ropes just two strands must be sufficient to bear the entire load. Secure lifting equipment so that it cannot slip.



1 Integrally cast eye on the motor

Figure 11-5 Motor attached for suspended transport

## 11.2.7 Storage

# \Lambda WARNING

## Injuries caused by falling objects

Danger of serious injuries caused by falling objects.

### NOTICE

### Failure of the exterior protection

Mechanical damage, chemical damage and thermal damage, such as scratches, acids, alkalis, sparks, welding beads and heat cause corrosion.

Do not damage the paint finish.

#### Note

### Danger of damage to the motor when stacked

Do not stack gearboxes or geared motors on top of each other.

Unless contractually agreed otherwise, the warranty period for the standard preservative lasts 6 months from the date of delivery.

In the case of storage in transit over 6 months, special arrangements must be made for preservation. Please contact Technical Support.

Store the gearbox or geared motor in dry, dust-free rooms that are maintained at a constant temperature.

The storage location must be vibration- and shock-free.

The free shaft ends, sealing elements and flange surfaces must have a protective coating.

Do not store the geared motor on the fan cover.

### Storage up to 36 months (optional)

Store the gearbox or geared motor in dry, dust-free rooms that are maintained at a constant temperature. Special packing is then not necessary.

If such premises are not available, pack the gearbox or the geared motor in plastic film or air-tight sealed film and materials. The films and materials must be able to absorb moisture. Cover them to provide protection against heat, direct sunlight and rain.

The permissible ambient temperature is -25 °C to +50 °C.

The life of the corrosion protection is 36 months from delivery.

## 11.2.8 Installation conditions for the motor

## NOTICE

### Risk of overheating due to insufficient cooling

Protect intake and discharge openings against blockages and coarse dust.

The cooling air must flow unimpeded into the air intakes and flow out through the air outlets. Exhaust air should not be drawn back in again.

Motor Mounted

Wall Mounted

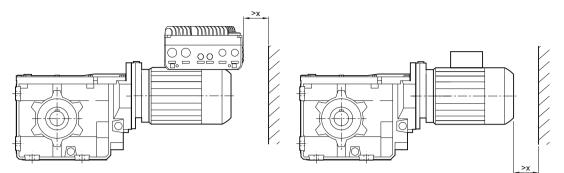



Figure 11-6 Minimum clearance of motor with G115D from wall for air intake

| Motor | Minimum clearance of motor with G115D from wall for air intake |              |  |  |
|-------|----------------------------------------------------------------|--------------|--|--|
|       | Motor Mounted                                                  | Wall Mounted |  |  |
|       | x in mm                                                        |              |  |  |
| 71    | 150                                                            | 15           |  |  |
| 80    | 150                                                            | 20           |  |  |
| 90    | 150                                                            | 20           |  |  |
| 100   | 150                                                            | 20           |  |  |
| 112   | 150                                                            | 25           |  |  |
| 132   | -                                                              | 30           |  |  |

## NOTICE

### Collision of mounted components on the converter

With a projecting converter on Motor Mounted, care should be taken to avoid potential collisions between the mounted components on the converter (connectors, cable entries etc.) and neighboring components.

See mounting clearance of the converter (150 mm) in section Mounting the G115D Motor Mounted drive (Page 39).

The permissible coolant temperature (ambient temperature at installation location) is -15 °C to +40 °C as standard for an installation altitude of up to 1 000 m above sea level. Deviating data are specified on the rating plate.

Drives for ambient temperatures from -30 °C to +40 °C and -20 °C to +55 °C are available as options.

When mounting in the vertical position with the fan cover facing upward, provide protection to prevent foreign objects falling in, e.g. using an appropriate cover.

# 11.2.9 Condensation drain hole (optional)

When installing the surface-cooled motor, take care that the condensation drain holes are at the lowest point.

# 11.2.10 Connecting the motor in the terminal box

For the Motor Mounted version, the converter is permanently connected to the motor. For the connection of the converter to the electricity supply network, see previous chapters.

## 11.2.10.1 General notes for motor connection (Wall Mounted)

# A DANGER

### Unintentional starting of the drive unit

Any work must be performed with the machine stationary, isolated from the power supply and locked-out so that it cannot be switched back on again. This also applies to auxiliary circuits, e.g. PT 1000.

Check that the unit is in a no-voltage condition.

Deviations in the voltage, frequency, waveform and/or symmetry of the line supply increase the temperature rise.

This also negatively impacts the electromagnetic compatibility.

Before starting work, make sure that a protective conductor is securely connected.

### Note

Pre-assembled conductors may only be used with fixed routed at temperatures below -30 °C.

Alternating bends are not allowed at these temperatures.

Connect the motor in such a way that a permanently safe electrical connection is ensured. Wire ends must not protrude. Use matching cable end pieces.

Connect the line voltage in the terminal box. Arrange the terminal link according to the circuit diagram for star or delta connection in the terminal box.

If the motor has been ordered with a dispatch circuit, the terminal links are already connected to the terminal board as star or delta connection.

Select the connection cables according to DIN VDE 0100. Take into account the rated current and the plant-specific conditions.

The following required information for connection is specified in the technical data:

- Direction of rotation
- Number and arrangement of the connections
- Circuit / connection of the motor winding.

## 11.2.10.2 Terminal box

## A DANGER

## Dangerous voltages

Can result in death, physical injury or material damage. Observe the following safety information before connecting-up the machine:

- Only qualified personnel is permitted to work on the machine.
- Only perform work when the machine is stationary.
- Isolate the machine from the power supply and take measures to prevent it being switched back on again. The same applies for auxiliary circuits.
- Check that the machine really is in a no-voltage condition.
- If you have loosened terminal blocks, rectifiers and/or similar parts when electrically connecting the motor, then secure these components back in the terminal box. See figure below.

## NOTICE

## Electrical connections can become loose

Please observe the tightening torques for cable glands, nuts and screws.

Secure the feather keys when performing a test run without output elements.

## NOTICE

## Malfunctions

It must be ensured that there are no foreign bodies, dirt or moisture in the terminal box.

The terminal box must be sealed so that dust and water cannot enter.

Seal the terminal box with the original seal. Seal cable entries to the terminal box and other open cable entries with an O-ring or suitable flat gasket.

Do not damage the terminal box or other functional parts inside the terminal box.

## Note

For a standard terminal board with 6 terminal studs, the terminal box can be turned 4 x 90 degrees on the terminal base of the stator housing.

The temperature sensor is connected in the terminal box.

Please note that the motor degree of protection is only obtained after correctly connecting up and tightening the cable glands and blanking plugs. Seal the thread of the cable glands and sealing plugs with a sealing compound or O-ring when connecting.

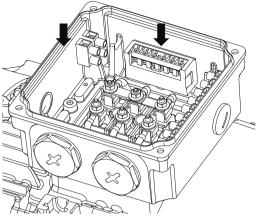



Figure 11-7 Fixing in the terminal box

## 11.2.10.3 Terminal marking

For terminal designations, the following principle definitions apply to three-phase motors:

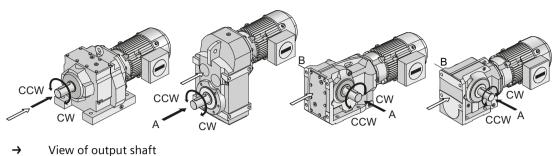

| 1 | U | 1 | - | 1 | Designation                                                                                                                                              |
|---|---|---|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| x |   |   |   |   | Index showing the pole assignment for pole-changing three-phase motors<br>(lower number = lower speed)<br>or, in special cases, for a subdivided winding |
|   | x |   |   |   | Phase designation (U, V, W)                                                                                                                              |
|   |   | x |   |   | Index showing winding start (1)<br>Index showing winding end (2)<br>Additional indexes if there is more than one connection per winding                  |
|   |   |   |   | x | Additional indices if it is obligatory to connect parallel line feeder cables to several terminals with otherwise identical designations                 |

 Table 11-11
 Terminal designations using the example 1U1-1

## 11.2.10.4 Direction of rotation

The motors are suitable for clockwise and counter-clockwise rotation.

When the line feeder cables are connected in the phase sequence L1, L2, L3 to U, V, W, the motor rotates clockwise when looking at the drive end of the shaft extension (DE). If two of the connections are swapped, the resulting direction of rotation is counter-clockwise, e.g. L1, L2, L3 to V, U, W.



 $\Rightarrow$  View of drive shaft / motor shaft

Figure 11-8 Direction of rotation

 Table 11-12
 Direction of rotation of the geared motor when viewing the output shaft

| Gearbox type | View of                 | Direction of rotation |                  |  |
|--------------|-------------------------|-----------------------|------------------|--|
|              |                         | Output shaft          | Input shaft      |  |
| Z            | Output shaft            | Clockwise             | Clockwise        |  |
| D            |                         |                       | Counterclockwise |  |
| FZ           |                         |                       | Clockwise        |  |
| FD           |                         |                       | Counterclockwise |  |
| В            | DE of the output shaft  |                       | Clockwise        |  |
|              | NDE of the output shaft |                       | Counterclockwise |  |
| К            | DE of the output shaft  |                       | Counterclockwise |  |
|              | NDE of the output shaft |                       | Counterclockwise |  |
| С            | DE of the output shaft  |                       | Clockwise        |  |
|              | NDE of the output shaft |                       | Counterclockwise |  |

## 11.2.10.5 Connecting the cables in the terminal box

### Note

Direct contact between the cable lug surfaces and the contact nuts ensures that the connection can carry current.

In the case of terminals with terminal clamps, distribute the conductors in such a way that the clamping heights are about the same on both sides of the fillet. This method of connection requires a single conductor to be bent into a U shape or connected with a cable lug. The same applies to the inner and outer terminals of the ground conductor.

Select the cable lug size according to the required cable cross-section and stud size. A sloped / angular arrangement is permitted if the required clearances and creepage distances are maintained.

Remove the insulation from the conductor ends so that the remaining insulation is almost long enough to reach the cable lug.

## 11.2.10.6 External grounding

Ensure the following when making connections:

- The connecting surface must be bare. Protect the surface against corrosion with a suitable substance, e.g. acid-free Vaseline.
- Insert the cable lug between the contact bracket and the grounding bracket. Do not remove the contact bracket which is pressed into the housing.
- Place the spring washer under the screw head.
- Observe the tightening torque for the locking screw, see Mounting and installation (Wall Mounted) (Page 459).

Refer to chapter Equipotential bonding (Page 52).

| Motor frame size | Thread size |
|------------------|-------------|
| 71 90            | M4          |
| 100 112          | M5          |
| 132              | M6          |

Table 11-13 Maximum conductor connection for external grounding

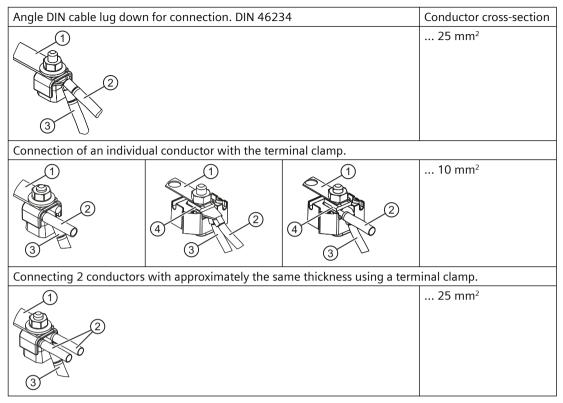
## 11.2.10.7 Mounting and installation (Wall Mounted)

See previous sections for the motor-mounted converter.

#### Note

Match the gland to the connecting cable used:

- Seal insert
- Armor
- Braiding
- Shielding


Screw the gland into the housing. Or secure the gland using a locknut.

### Terminal board connection

| Tabla 11 11 | Tightening torque for the terminal board connection |
|-------------|-----------------------------------------------------|
|             | rightening torque for the terminal board connection |

| Thread size | Tightening torque |      | Thread size | Tightenin | Tightening torque |  |
|-------------|-------------------|------|-------------|-----------|-------------------|--|
|             | Min.              | Max. |             | Min.      | Max.              |  |
|             | Nm                | Nm   |             | Nm        | Nm                |  |
| M4          | 0.8               | 1.2  | M10         | 9         | 13                |  |
| M5          | 1.8               | 2.5  | M12         | 14        | 20                |  |
| M6          | 2.7               | 4    | M16         | 27        | 40                |  |
| M8          | 5.5               | 8    | -           | -         | -                 |  |

## Type of conductor connection



- 1 Link rail
- (2) Line connecting cable
- ③ Motor connecting cable
- (4) Cover washer

## Grounding connection type

| Connection of an individual conductor under the external grounding bracket.    | Conductor cross-section |  |  |  |
|--------------------------------------------------------------------------------|-------------------------|--|--|--|
|                                                                                | 10 mm <sup>2</sup>      |  |  |  |
| Connect with the DIN cable lug under the external grounding bracket DIN 46234. |                         |  |  |  |
|                                                                                | 25 mm²                  |  |  |  |

## Cable gland

### NOTICE

### Damage to the cable jacket

An excessively high tightening torque with a different cable jacket material will damage the cable jacket.

When different cable jacket materials are used, apply a lower tightening torque.

For metal or plastic cable glands, please use the following tightening torques for direct mounting. The O-ring cross-section is 2 mm.

| Thread size | Tightening torque ±10% |         | Thread size | Tightening | Tightening torque ±10% |  |
|-------------|------------------------|---------|-------------|------------|------------------------|--|
|             | Metal                  | Plastic |             | Metal      | Plastic                |  |
|             | Nm                     | Nm      |             | Nm         | Nm                     |  |
| M12 x 1.5   | 8                      | 1.5     | M32 x 1.5   | 18         | 6                      |  |
| M16 x 1.5   | 10                     | 2       | M40 x 1.5   |            |                        |  |
| M20 x 1.5   | 12                     | 4       | M50 x 1.5   | 20         |                        |  |
| M25 x 1.5   |                        |         | M63 x 1.5   |            |                        |  |

Table 11-15 Tightening torque for cable glands and blanking plugs

# 11.2.11 Converter operation

Suitably shielded cables and EMC cable glands must be used to connect the motors.

The maximum length of the motor cables is 15 m (49 ft), see section Maximum permissible cable length (Page 70).

## Permissible voltage stress

For drives with G115D and EMC-adequate connection, the motor windings are designed to be converter-suitable (against partial discharge).

## **Bearing currents**

Additional bearing currents due to steep voltage edges when switching. Make sure the drive system is installed in accordance with EMC requirements.

## Mechanical stress and grease lifetime

High speeds that exceed the rated speed and the resulting increased vibrations alter the mechanical running smoothness and the bearings are subjected to increased stress. This reduces the service life of the grease and bearings.

# 11.2.12 Checking the insulation resistance (Wall Mounted)

Only qualified personnel may work on power installations.

# M WARNING

### Unintentional starting of the drive unit

Secure the drive unit to prevent it from being started up unintentionally.

Attach a warning notice to the start switch.

# M WARNING

### Hazardous voltage and rotating parts

Before starting commissioning, mount the covers required for the correct air guidance, and prevent contact with active / current-carrying or rotating parts.

# 

### Hazardous voltage at the terminals

In some cases, the terminals can be at hazardous voltage levels during the measurement and immediately afterwards. The terminals must not be touched.

Carry out a check on the power cables connected to ensure that no voltage can be applied.

### Note

The insulation resistance must be checked before commissioning and after lengthy periods of storage or non-use.

Before you begin measuring the insulation resistance, please read the operating manual for the insulation resistance meter you are going to use. Before measuring the insulation resistance, disconnect any main circuit cables that are connected to the terminals.

### Note

If the critical insulation resistance is less than or equal to this value, the windings must be dried or, if the fan is removed, cleaned thoroughly and dried.

Note that the insulation resistance of dried, clean windings is lower than that of warm windings. The insulation resistance can only be properly assessed after conversion to the reference temperature of +25 °C.

If the measured value is close to the critical value, you must check the insulation resistance at suitably frequent intervals.

Measure the minimum insulation resistance of the winding to the motor housing at a winding temperature between +20 °C and +30 °C. Other insulation resistance values apply to temperatures outside this range. When making the measurement, wait until the final resistance value is reached, approx. 1 minute.

Measure the critical insulation resistance at the operating temperature of the winding.

## Limit values

The following limit values are valid for the insulation resistance at a rated voltage of  $U_N < 2$  kV and a winding temperature of +25 °C.

| 500 V Measuring circuit voltage                                                 |  |
|---------------------------------------------------------------------------------|--|
| 10 MΩ Minimum insulation resistance for new, cleaned or repaired windings       |  |
| 0.5 MQ / kV Critical specific insulation resistance after a long operating time |  |

Observe the following:

- If you measure a winding temperature other than +25 °C, convert the measured value to the reference temperature +25 °C. The insulation resistance is halved for every 10 K increase in temperature, and it is doubled for every 10 K decrease in temperature.
- If the insulation resistance is close to or below the minimum value, the cause could be humidity and dirt accumulation. Dry the windings.
- During operation, the insulation resistance of the windings can fall to the critical insulation resistance due to ambient and operational influences. To calculate the critical insulation resistance value for a winding temperature of +25 °C, multiply the rated voltage kV by the specific critical resistance value (0.5 M $\Omega$  / kV). Example: rated voltage U<sub>N</sub> 690 V: 690 V x 0.5 M $\Omega$  / kV = 0.345 M $\Omega$ .

# 11.2.13 Commissioning the motor

#### Note

Protect the motor against overload.

Do not exceed the maximum speed.

### Note

### With a brake with manual release:

No braking effect when the manual brake release lever is locked. The brake is then permanently released.

Before commissioning the geared motor, ensure that the brake is not locked.

Unscrew the manual brake release lever and keep it separate from the geared motor.

### Note

When starting / before switching on, use the appropriate circuit to ensure that the motor brake is released.

#### Note

### With a brake motor:

After maintenance work, check the constancy of the rated air gap of the brake. The brake motor must be current-free. Check the gap between the armature disk and the solenoid at 3 points with a feeler gauge.

#### Note

Additional tests are also required, depending on the particular plant-specific situation.

After checking and ensuring the following items, you can start commissioning the motor:

- Compare the data on the rating plate with the operating conditions.
- Check the direction of rotation.
- For a Y /  $\Delta$  start, a switch is made from star to delta when the starting current of the Y stage has decayed.
- Check that the electrical connections are securely fastened.
- Check all the touch protection measures for both moving and live parts.
- Check that the monitoring instruments are connected and set correctly.
- Check the coolant temperature.
- Check any supplementary equipment being used.
- Check that air intake openings and cooling surfaces are clean.
- Check the clearances from the geared motor to adjacent components, see Installation conditions for the motor (Page 453).
- Establish suitable connections for grounding and equipotential bonding.
- Properly mount and fasten the motor.
- Check that the ventilation is not impeded and that the discharged air including that from adjacent units cannot be drawn back in.
- Check the belt tension if a belt drive is being used.
- Close and seal the terminal box cover and seal the cable entries.

# 11.2.14 Faults, causes and remedies

### Note

Faults and malfunctions that occur during the warranty period and requiring repair work on the motor may only be remedied by Technical Support. If faults occur without a clearly identifiable cause, Siemens AG recommends the services of the Technical Support even after the warranty period has elapsed.

If you need the help from the Technical Support, please have the following information ready:

- Rating plate data
- Nature and extent of the fault
- Suspected cause

| Faults                          | Causes                                                                                                        | Remedy                                                       |
|---------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Bearing overheated.             | Too much grease in the bearing.                                                                               | Remove excess grease.                                        |
|                                 | Bearing dirty.                                                                                                | Replace the bearings.                                        |
|                                 | Belt tension too high.                                                                                        | Reduce belt tension.                                         |
|                                 | Coupling forces pull or push.                                                                                 | Align the motor precisely, correct the coupling.             |
|                                 | Coolant temperature outside the permissible range.                                                            | Adjust the cooling air to the appropriate temperature.       |
|                                 | The bearing grease has a dark color.                                                                          | Check for bearing currents.                                  |
|                                 | Not enough grease in the bearing.                                                                             | Lubricate as specified by the manufac-<br>turer.             |
|                                 | Incorrect motor mounting.                                                                                     | Check the motor type of construction.                        |
| Bearing noise.                  | Not enough grease in the bearing.                                                                             | Lubricate as specified by the manufac-<br>turer.             |
|                                 | Incorrect motor mounting.                                                                                     | Check the motor type of construction.                        |
|                                 | Brinelling on the inner ring of the<br>bearing, e.g. caused when the mo-<br>tor starts with a locked bearing. | Replace bearing, prevent vibration when motor is stationary. |
| Motor running uneven-<br>ly.    | Coupling forces pull or push.                                                                                 | Align the motor precisely, correct the coupling.             |
|                                 | Incorrect motor mounting.                                                                                     | Check the motor type of construction.                        |
|                                 | Out of balance due to belt pulley or coupling.                                                                | Balance precisely.                                           |
|                                 | Motor mounting too loose.                                                                                     | Check the mounting.                                          |
| Motor does not acceler-<br>ate. | Opposing torque too high.                                                                                     | Check the motor torque and the load torque.                  |
|                                 | Incorrect circuit.                                                                                            | Observe the circuit diagram and rating plate.                |

Table 11-16 Faults, causes and remedies

| Faults                      | Causes                                             | Remedy                                                       |  |
|-----------------------------|----------------------------------------------------|--------------------------------------------------------------|--|
| Motor temperature too high. | Incorrect circuit.                                 | Observe the circuit diagram and rating plate.                |  |
|                             | Overload.                                          | Compare data on the rating plate.                            |  |
|                             | Switching frequency too high.                      | Observe the rated duty.                                      |  |
|                             | Insufficient ventilation.                          | Check the cooling air ducts, check the direction of rotation |  |
|                             | Cooling air ducts dirty.                           | Clean cooling air ducts.                                     |  |
|                             | Coolant temperature outside the permissible range. | Adjust the cooling air to the appropriate temperature.       |  |
| Significant drop in speed.  | Opposing torque too high.                          | Check the motor torque and the load torque.                  |  |
|                             | Line voltage too low.                              | Check the line supply.                                       |  |
|                             | Phase interruption.                                | Check the connection to the line supply.                     |  |
|                             | Incorrect circuit.                                 | Observe the circuit diagram and rating plate.                |  |
|                             | Overload.                                          | Compare data on the rating plate.                            |  |
| Protective equipment        | Phase interruption.                                | Check the connection to the line supply.                     |  |
| trips.                      | Incorrect circuit.                                 | Observe the circuit diagram and rating plate.                |  |
|                             | Overload.                                          | Compare data on the rating plate.                            |  |
|                             | Switching frequency too high.                      | Observe the rated duty.                                      |  |
|                             | Winding and terminal short-circuit.                | Measure the insulation resistance.                           |  |
|                             | Starting time is exceeded.                         | Check the run-up conditions.                                 |  |

# 11.2.15 General notes about maintenance

## 

## Unintentional starting of the drive unit

Secure the drive unit to prevent it from being started up unintentionally.

Attach a warning notice to the start switch.

## NOTICE

## Improper maintenance

Only authorized qualified personnel may perform the maintenance and servicing. Only original parts supplied by Siemens AG may be installed.

Only qualified personnel may perform the inspection, maintenance and servicing work. Note the information in the general notes and safety information (Page 449).

# 11.2.16 Locking the manual release of the brake (optional)

# MARNING

#### Personal injuries and material damage caused by a locked brake

No braking effect when the manual brake release lever is locked. The brake is then permanently released.

Before commissioning the geared motor, ensure that the brake can be applied.

Unscrew the manual brake release lever and keep it separate from the geared motor.

Keep the lockable manual release in the released state for maintenance work.

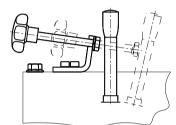



Figure 11-9 Lockable manual release

## Locking the manual brake release lever

- 1. Screw on the manual brake release lever.
- 2. Bring the manual brake release lever into the position in which the brake is released.
- 3. Tighten the locking screw far enough so that the manual brake release lever cannot return to the unreleased position.

#### 

#### **Releasing the lock**

- 1. Unscrew the locking screw far enough so that the brake completely returns to the unreleased position. The gap between the locking screw and the manual brake release lever should be 2 to 5 mm.
- 2. Unscrew the manual brake release lever and keep the lever separately from the geared motor.

# 11.2.17 Lubrication

The standard version of the motors bearings are permanently lubricated (2Z bearing) and cannot be relubricated. If this is not the case, this is indicated by a warning notice on the motor.

The specified grease service life values are valid for an ambient temperature of up to a maximum of +40 °C. For every 10°C increase in temperature, the grease service life is reduced by a factor of 0.7 of the value in the table (max. +20 °C = factor 0.5).

At an ambient temperature of +25 °C, the grease service life can be expected to be doubled.

For versions with closed bearings (2Z bearings), we recommend that the bearings are replaced after 3 to 4 years. For options with open bearings (1Z bearing: special, food, organic grease), we recommend that the bearing grease is replaced after 3 to 4 years, regardless of the operating hours.

| Tabla 11 17 | Dolling bearing and | l chaft cooling ring lubricont |
|-------------|---------------------|--------------------------------|
|             | Roming-bearing and  | shaft-sealing-ring lubricant   |

| Field of application                                                            | Ambient temperature                                                                     | Manufacturer | Туре                   |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|------------------------|
| Standard                                                                        | -40 °C to +80 °C                                                                        | Fuchs        | RENOLIT CX-TOM 15      |
| Foodstuff-compatible for the food industry                                      | -30 °C to +60 °C                                                                        | Castrol      | Optileb GR UF 1 NSF H1 |
| Biologically degradable, for<br>agriculture, forestry and wa-<br>ter industries | -35 °C to +60 °C for motor with ISO class F -35 °C to +45 °C for motor with ISO class H | Fuchs        | Plantogel 2 S          |

#### Horizontal mounting position (IM B.)

| Frame size | Motor spe | Motor speed n <sub>N</sub> in rpm |       |       |       | Grease quantity in the bearing |       |        |
|------------|-----------|-----------------------------------|-------|-------|-------|--------------------------------|-------|--------|
|            | 3 600     | 3000                              | 1800  | 1500  | 1200  | ≤ 1 000                        | D-end | ND-end |
|            | Operating | g hours in l                      | 1     |       |       |                                | g     |        |
| 71         | 33000     | 33000                             | 33000 | 33000 | 33000 | 33000                          | 7     | 5      |
| 80         |           |                                   |       |       |       |                                | 9     | 9      |
| 90         |           |                                   |       |       |       |                                | 15    | 11     |
| 100        | 24000     |                                   |       |       |       |                                | 20    | 15     |
| 112        | ]         |                                   |       |       |       |                                | 45    | 25     |
| 132        |           | 24000                             |       |       |       |                                | 75    | 50     |

| Table 11-18 | Grease service life in o | perating hours [h] with | permanent lubrication |
|-------------|--------------------------|-------------------------|-----------------------|
|             |                          |                         |                       |

#### Vertical mounting position (IM V.)

 Table 11-19
 Grease service life in operating hours [h] with permanent lubrication

| Frame size | Motor sp  | Motor speed n <sub>N</sub> in rpm |       |       |       |         | Grease quantity in the bearing |        |
|------------|-----------|-----------------------------------|-------|-------|-------|---------|--------------------------------|--------|
|            | 3 600     | 3000                              | 1800  | 1500  | 1200  | ≤ 1 000 | D-end                          | ND-end |
|            | Operating | g hours in l                      | h     |       | •     |         | g                              |        |
| 71         | 24000     | 33000                             | 33000 | 33000 | 33000 | 33000   | 9                              | 9      |
| 80         |           | 24000                             | ]     |       |       |         |                                |        |
| 90         |           |                                   |       |       |       |         | 15                             | 11     |
| 100        | 17000     |                                   |       |       |       |         | 20                             | 15     |
| 112        |           | 17000                             | 24000 | ]     |       |         | 45                             | 25     |
| 132        | 12000     |                                   |       | 24000 | ]     |         | 75                             | 50     |

# 11.2.18 Checking the tightness of fastening bolts

#### Note

Replace damaged headless bolts with new bolts of the same type and strength class.

Switch off the power supply to the drive unit. Check all fastening bolts for tightness using a torque wrench.

The general tolerance for the tightening torque in Nm is 10 %. The friction coefficient is 0.14 µ.

| Thread size | Tightening tor | que for strength class |       |
|-------------|----------------|------------------------|-------|
|             | 8.8            | 10.9                   | 12.9  |
|             | Nm             | Nm                     | Nm    |
| M4          | 3              | 4                      | 5     |
| M5          | 6              | 9                      | 10    |
| M6          | 10             | 15                     | 18    |
| M8          | 25             | 35                     | 41    |
| M10         | 50             | 70                     | 85    |
| M12         | 90             | 120                    | 145   |
| M16         | 210            | 295                    | 355   |
| M20         | 450            | 580                    | 690   |
| M24         | 750            | 1 000                  | 1200  |
| M30         | 1500           | 2 000                  | 2 400 |
| M36         | 2 500          | 3 600                  | 4 200 |

Table 11-20 Tightening torques for fastening bolts

# 11.2.19 Inspection of the motor

Check the motor in accordance with the criteria set out in General motor information (Page 449). Touch up damaged paintwork carefully.

# 11.2.20 Servicing the brake

## 11.2.20.1 Wear of the spring-operated brake

The friction lining and the mechanical components of the brake are subject to wear due to their inherent function. For safe and fault-free operation, the brake must be regularly checked and adjusted, and if necessary, replaced.

The following table describes the different causes of wear and their effects on the springoperated brake components. The important influencing factors have to be quantified in order to calculate the service life of the rotor and the brake and determine the stipulated maintenance

intervals. Here, the most important factors are the work as a result of the frictional force, the speed at the start of braking and the switching frequency. If several of the listed causes of wear to the friction lining occur at the same time in a single application, the influencing factors should be added together for the wear calculation.

| Component                         | Cause                                                                                                            | Effect                                                    | Influencing factor                                                |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|--|
| Friction lining                   | Operational braking                                                                                              | Friction lining wear                                      | Work as a result of the                                           |  |
|                                   | Emergency stops                                                                                                  |                                                           | frictional force                                                  |  |
|                                   | Wear caused by overlap<br>when starting and stopping<br>the geared motor                                         |                                                           |                                                                   |  |
|                                   | Active braking by the motor<br>supported by the brake<br>(quick stop)                                            |                                                           |                                                                   |  |
|                                   | Low speed and mounting position 'motor at top'                                                                   |                                                           |                                                                   |  |
|                                   | Wear when starting for mo-<br>tor a mounting position with<br>vertical shaft, even when<br>the brake is released |                                                           | Number of start / stop<br>cycles                                  |  |
| Armature disk and flange          | Friction of the brake lining                                                                                     | Run-in of armature disk<br>and flange                     | Work as a result of the frictional force                          |  |
| Braking rotor gear teeth          | Relative movement and impacts between rotor and hub                                                              | Wear of the teeth (pri-<br>marily on the rotor side)      | Number of start / stop<br>cycles                                  |  |
| Support of the ar-<br>mature disk | Load change and impacts in<br>the backlash between the ar-<br>mature disk, sleeve screws<br>and guide pins       | Deflection of armature<br>disk, sleeve screws and<br>pins | Number of start / stop<br>cycles, strength of brak-<br>ing torque |  |
| Springs                           | Axial load cycle and shear<br>stresses in the springs due to<br>radial backlash in the arma-<br>ture disk        | Decrease in the spring force or fatigue failure           | Number of switching op-<br>erations of the brake                  |  |

Table 11-21 Causes of wear to the spring-operated brake

## 11.2.20.2 Maintenance intervals for the brake

For safe and trouble-free operation, check and maintain the spring-operated brake at regular intervals.

For operational braking, the maintenance intervals depend on the loading on the brake in the application. Take all causes of wear into account when calculating the maintenance intervals. Siemens AG recommends a regular inspection at fixed time intervals for low loaded brakes, e.g. holding brakes with an emergency stop.

Failure to maintain the brake can lead to operating faults, production outage or damage to the plant. Specify a maintenance plan for each application that is appropriate to the operating

conditions and loading of the brake. The maintenance intervals and maintenance work for the pneumatic brake are listed in the table.

Table 11-22 Maintenance interval for the brake

| Brake                        | Maintenance interval                           |
|------------------------------|------------------------------------------------|
| Operational brake            | According to service life calculation          |
|                              | Otherwise every six months                     |
|                              | After 4 000 operating hours at the latest      |
| Holding brake with emergency | Minimum every 2 years                          |
| stop                         | After 1 million cycles at the latest           |
|                              | Shorter intervals for frequent emergency stops |

# 11.2.20.3 Adjusting the air gap

| Unintentiona   | l starting of the drive unit                                 |  |
|----------------|--------------------------------------------------------------|--|
| Switch off the | power supply to the drive unit.                              |  |
| The brake mu   | st be in a torque-free condition.                            |  |
| Secure the dri | ve unit to prevent it from being started up unintentionally. |  |
| Attach a warn  | ing notice to the start switch.                              |  |

# Decrease of braking effect due to contamination

Do not allow oil or grease to come into contact with friction surfaces.

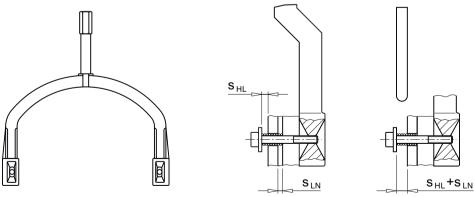



Figure 11-10 Setting dimension for air gap

# Procedure

- 1. Remove the fan cover.
- 2. Loosen the fixing screws of the brake.
- 3. Screw the sleeve screws further into the solenoid using an open-ended spanner.
- 4. Tighten the fixing screws of the brake.
- 5. Check the air gap  $s_{LN}$  in the vicinity of the screws using a feeler gauge.
- 6. If necessary, correct the air gap  $s_{LN}$  and then check it again.
- 7. When combined with manual brake release: Check the setting dimension  $s_{HL}$  and correct  $s_{HL}$  if necessary.
- 8. Mount the fan cover.

#### 

Table 11-23 Air gap values

| Brake type          | Nominal air                              | Maximum air gap                                | for                                  | Reference               |
|---------------------|------------------------------------------|------------------------------------------------|--------------------------------------|-------------------------|
|                     | gap<br>s <sub>LN</sub><br>(+0.1 / -0.05) | Standard excita-<br>tion<br>s <sub>Lmax.</sub> | Overexcitation<br>s <sub>Lmax.</sub> | gage<br>s <sub>HL</sub> |
|                     | mm                                       | mm                                             | mm                                   | mm                      |
| L4                  | 0.2                                      | 0.5                                            | 0.7                                  | 1.0                     |
| L8/5                |                                          | 0.55                                           |                                      |                         |
| L8                  |                                          | 0.5                                            |                                      |                         |
| L16/10, L16/13, L16 |                                          | 0.6                                            | 0.8                                  |                         |
| L16/20              |                                          | 0.5                                            |                                      |                         |
| L32/23              | 0.3                                      | 0.85                                           | 0.9                                  | 1.5                     |
| L32                 |                                          | 0.75                                           |                                      |                         |
| L32/40              |                                          | 0.65                                           |                                      |                         |
| L80/50, L80/63      |                                          | 0.9                                            |                                      |                         |

Table 11-24 Tightening torque for the brake screw

| Brake type |                                                     | Thread size | Tightening torque |
|------------|-----------------------------------------------------|-------------|-------------------|
| Siemens    | Brake supplier                                      |             | Nm                |
| L4         | INTORQ BA BFK458 (06E)                              | 3 x M4      | 2.8               |
| L8         | INTORQ BA BFK458 (08E)                              | 3 x M5      | 5.5               |
| L16        | INTORQ BA BFK458 (10E)                              | 3 x M6      | 9.5               |
| L32        | INTORQ BA BFK458 (12E)                              | 3 x M6      | 9.5               |
| L80        | INTORQ BA BFK458 (14E), IN-<br>TORQ BA BFK458 (16E) | 3 x M8      | 23                |

# 11.2.20.4 Replacing the friction lining

| Unintentional starting of the drive unit                                   |
|----------------------------------------------------------------------------|
| Switch off the power supply to the drive unit.                             |
| The brake must be in a torque-free condition.                              |
| Secure the drive unit to prevent it from being started up unintentionally. |
| Attach a warning notice to the start switch.                               |

# Procedure

- Remove the fan cover. When combined with manual release: Unscrew the manual brake release lever.
- 2. Release the connecting cable.
- 3. Remove the fan locking ring and pull out the fan.
- 4. Loosen the brake screws evenly and remove the screws completely. Adjust the solenoid, see .
- 5. Completely pull the rotor off the hub.
- 6. Check the hub teeth.
- 7. Check the friction surface at the bearing shield. If there is severe scoring on the friction plate or flange, replace the friction plate or flange. Rework the friction surfaces if there is severe scoring on the bearing shield.
- 8. Measure the thickness of the new rotor and the head height of the sleeve screws with a caliper gauge.
- 9. Calculate the gap between the solenoid and the armature disk as follows: gap = rotor thickness +  $s_{LN}$  - head height.
- 10. Unscrew the sleeve screws evenly until the calculated gap between the solenoid and the armature disk is reached.
- 11. Mount the new rotor and solenoid. Set the air gap of the brake, see Adjusting the air gap (Page 471).
- 12. Connect the connection cable.
- 13. Mount the fan cover.

#### 

| Brake type | Nominal air Minimum ro                   |           | r Maximum permissible                                               |                                                  |  |  |
|------------|------------------------------------------|-----------|---------------------------------------------------------------------|--------------------------------------------------|--|--|
|            | gap<br>s <sub>LN</sub><br>(+0.1 / -0.05) | thickness | Operating speed if max.<br>permissible operating<br>energy utilized | No-load speed<br>with emergency stop<br>function |  |  |
|            |                                          |           | Normal friction lining                                              | Normal friction lining                           |  |  |
|            | mm                                       | mm        | rpm                                                                 | rpm                                              |  |  |
| L4         | 0.2                                      | 4.5       | 4 000                                                               | 6000                                             |  |  |
| L8         | 0.2                                      | 5.5       | 4 000                                                               | 5 000                                            |  |  |
| L16        | 0.2                                      | 7.5       | 3 600                                                               | 4 000                                            |  |  |
| L32        | 0.3                                      | 8         | 3 600                                                               | 3 600                                            |  |  |
| L60        | 0.3                                      | 7.5       | 3 600                                                               | 3 600                                            |  |  |
| L80        | 0.3                                      | 8         | 3 600                                                               | 3 600                                            |  |  |

# 11.2.21 Circuit diagrams

The circuit diagrams include the information about:

- Assembling the connections
- Motor connection
- Use in electric circuit diagrams.

The circuit diagrams are placed in the terminal box, and supplied with the motor.

Table 11-26 Example of the circuit diagram numbering

| Example:     | A | 0 | 100 | 000 |
|--------------|---|---|-----|-----|
| 1st position | A |   |     |     |
| 2nd position |   | 0 |     |     |
| 3rd position |   |   | 100 |     |
| 4th position |   |   |     | 000 |

Table 11-27 Explanation

| 1st position      | Identification letter for circuit diagrams.                                                        |  |  |  |  |
|-------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| 2nd posi-         | Marking for the connection type:                                                                   |  |  |  |  |
| tion              | 0: Standard connection at the terminal board (motor), terminal block (auxiliary connec-<br>tions). |  |  |  |  |
|                   | 1: Standard connection at the connector box.                                                       |  |  |  |  |
| 3rd posi-<br>tion | Identification for the circuit diagram content.                                                    |  |  |  |  |
| 4th posi-<br>tion | Consecutive number for additional versions.                                                        |  |  |  |  |

# Modular structure of the circuit diagrams

The circuit diagrams have a modular structure and have been simplified.

Table 11-28 Structure of the circuit diagrams

| Supple-<br>mentary<br>device | Terminal<br>marking  | Supple-<br>mentary<br>device | Terminal<br>marking  | Terminal<br>numbering | Designation                       | Function                                     |
|------------------------------|----------------------|------------------------------|----------------------|-----------------------|-----------------------------------|----------------------------------------------|
| Europe                       | Europe               | Nema                         | Nema                 |                       |                                   |                                              |
| 1BD                          | 1BD1; 1BD2           | В                            | B1; B2               | 05; 06                | Brake control                     | DC connection, brake                         |
| 1BA                          | 1BA1; 1BA2           | В                            | B3; B4               | 07; 08                | Brake control                     | AC voltage connection,<br>brake rectifier    |
| 15                           | 151; 152             | В                            | B5; B6               | 09; 10                | Brake control                     | Jumper, DC circuit, brake rec-<br>tifier     |
| 1R                           | 1R1; 1R2             | Р                            | P27; P28             | 95; 96                | Temperature monitor motor winding | Resistance thermometer<br>Pt1000             |
| 7R                           | 7R1; 7R2.1;<br>7R2.2 | Р                            | P29; P30.1;<br>P30.2 | 97; 98.1;<br>98.2     | Temperature monitor<br>gearbox    | Resistance thermometer<br>1 Pt100 oil sensor |

# 11.2.22 Spare parts list, motor

# 11.2.22.1 Motor frame sizes 71 - 132

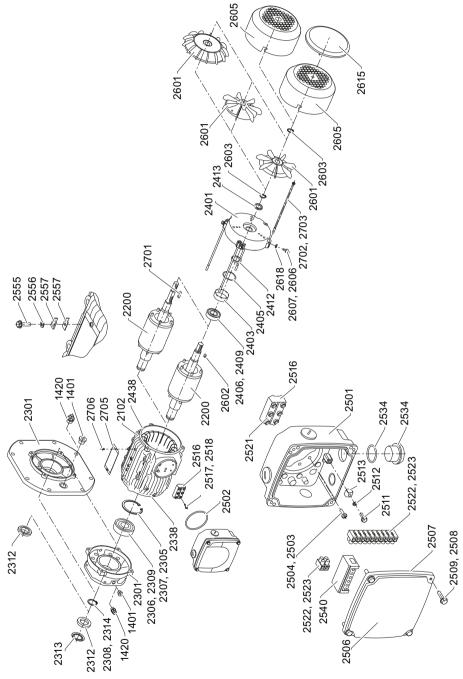



Figure 11-11 Motor frame sizes 71 - 90

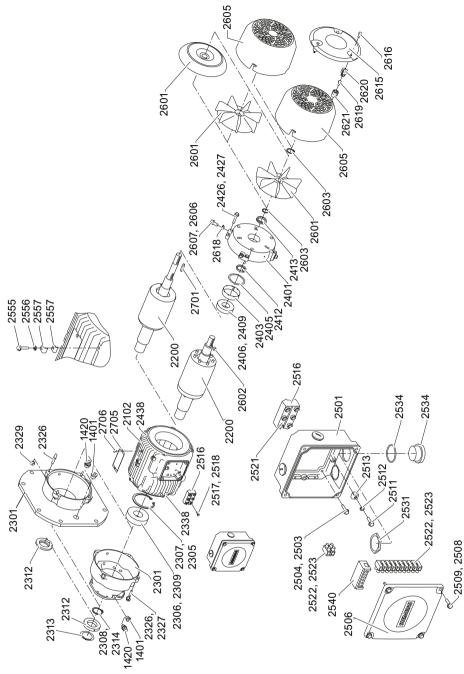
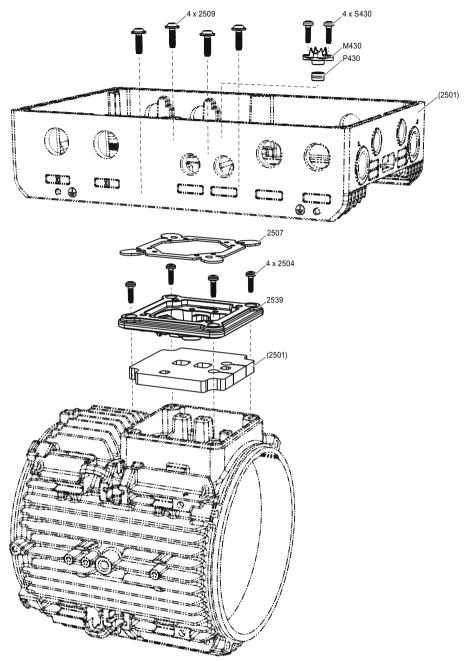
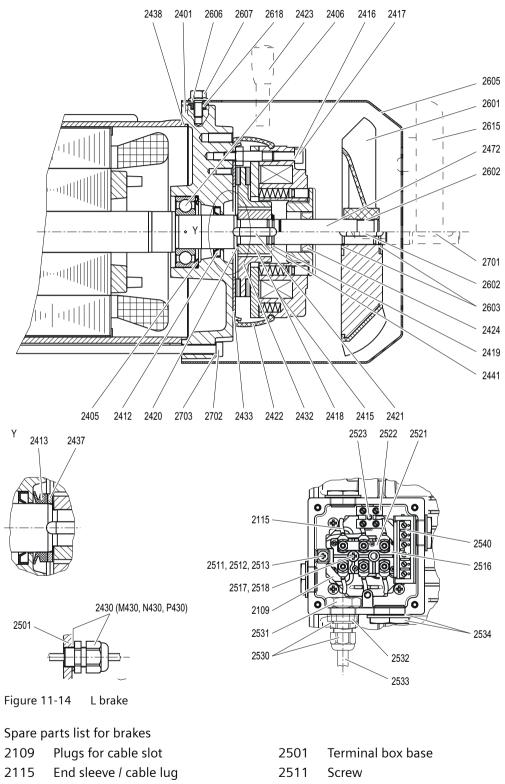



Figure 11-12 Motor frame sizes 100 - 160





Figure 11-13 G115D motor frame sizes 71 - 112

Spare parts list for motor frame sizes 71 - 132

| 1401 | Screw plug  | 2516 | Complete terminal board |
|------|-------------|------|-------------------------|
| 1420 | Vent filter | 2517 | Screw                   |
| 2102 | Stator      | 2518 | Screw retainer          |
| 2200 | Rotor       | 2519 | Nut                     |
| 2301 | End shield  | 2521 | Terminal connector      |
| 2305 | Shim        | 2522 | Terminal strip          |
| 2306 | Bearing     | 2523 | Screw                   |

| 2307 | Locking ring               | 2526 | Mounting plate                   |
|------|----------------------------|------|----------------------------------|
| 2308 | Locking ring               | 2531 | Nut                              |
| 2309 | Lubricant                  | 2534 | Screw plug with O-ring           |
| 2312 | Shaft sealing ring         | 2536 | Foam panel                       |
| 2313 | Oil splasher               | 2539 | Adapter plate/intermediate plate |
| 2314 | Shim                       | 2540 | Rectifier                        |
| 2326 | Screw                      | 2555 | Screw                            |
| 2327 | Screw retainer             | 2556 | Screw retainer                   |
| 2329 | Nut                        | 2557 | Bracket                          |
| 2338 | Seal                       | 2601 | Fan blade                        |
| 2401 | End shield                 | 2602 | Tolerance ring                   |
| 2403 | Spring band                | 2603 | Locking ring                     |
| 2405 | Spring washer              | 2605 | Fan cover                        |
| 2406 | Bearing                    | 2606 | Screw retainer                   |
| 2409 | Lubricant                  | 2607 | Screw                            |
| 2412 | Shaft sealing ring         | 2615 | Protective canopy                |
| 2413 | V-ring                     | 2616 | Screw                            |
| 2426 | Screw                      | 2617 | Riveting nut                     |
| 2427 | Screw retainer             | 2618 | Damping disk                     |
| 2438 | Seal                       | 2619 | Screw                            |
| 2501 | Lower terminal box section | 2620 | Barrel / bushing                 |
| 2502 | Seal                       | 2621 | Barrel / bushing                 |
| 2503 | Screw retainer             | 2701 | Feather key                      |
| 2504 | Screw                      | 2702 | Screw                            |
| 2506 | Terminal box cover         | 2703 | Screw retainer                   |
| 2507 | Seal                       | 2705 | Rating plate                     |
| 2508 | Screw retainer             | 2706 | Screw                            |
| 2509 | Screw                      | 2714 | Eyebolt                          |
| 2511 | Screw                      | M430 | Brake cable holder               |
| 2512 | Screw retainer             | P430 | Ring gasket for brake cable      |
| 2513 | Bracket                    | S430 | Screw for thrust pad M430        |
|      |                            |      |                                  |

# 11.2.22.2 Brake



2401 End shield

Screw retainer

2512

| 2405 |                               | 2542 |                         |
|------|-------------------------------|------|-------------------------|
| 2405 | Spring washer                 | 2513 | Bracket                 |
| 2406 | Bearing                       | 2516 | Complete terminal board |
| 2412 | Potting compound              | 2517 | Screw                   |
| 2413 | V-ring                        | 2518 | Screw retainer          |
| 2415 | Brake                         | 2521 | Terminal connector      |
| 2416 | Screw retainer                | 2522 | Terminal strip          |
| 2417 | Screw                         | 2523 | Screw                   |
| 2418 | Coupling driver               | 2530 | Cable gland             |
| 2419 | Locking ring                  | 2531 | Nut                     |
| 2420 | Supporting / adjusting washer | 2532 | Reduction / expansion   |
| 2421 | Feather key                   | 2533 | Cable                   |
| 2422 | Dust protection ring          | 2534 | Screw plug              |
| 2423 | Manual release lever          | 2540 | Rectifier               |
| 2424 | Shaft sealing ring            | 2601 | Fan blade               |
| 2430 | Complete bushing              | 2602 | Tolerance ring          |
| M430 | Cable gland                   | 2603 | Locking ring            |
| N430 | Seal (O-ring)                 | 2605 | Fan cover               |
| P430 | Seal insert                   | 2606 | Screw retainer          |
| 2432 | Friction disk                 | 2607 | Screw                   |
| 2433 | Friction plate                | 2615 | Protective canopy       |
| 2437 | Supporting / adjusting washer | 2618 | Damping disk            |
| 2438 | Seal                          | 2701 | Feather key             |
| 2441 | Supporting / adjusting washer | 2702 | Screw                   |
| 2472 | Shaft extension               | 2703 | Screw retainer          |

# 11.3 Specific data gearbox

# 11.3.1 General information gearbox

#### Note

Siemens AG does not accept any liability for damage and operational disturbances that result from the non-observance of these operating instructions.

These operating instructions are part of the gearbox delivery. Store the operating instructions near the gearbox. Please read the operating instructions prior to handling the gearbox and observe the information they contain. This is how you ensure safe and disturbance-free operation.

These operating instructions apply to the standard version of SIMOGEAR gearboxes:

- Helical gearboxes E, D and Z, frame sizes 19 to 89
- Parallel shaft gearboxes FD / FZ, frame sizes 29 to 89
- Bevel gearboxes B, K, frame sizes 19 to 109
- Helical worm gearboxes C, frame sizes 29 to 89

For a description of the precise designation see Gearbox type designation (Page 442).

| Table 11-29 | Article number code |
|-------------|---------------------|
|-------------|---------------------|

| SIMOGEAR gearbox          | Article number position |   |   |   |   |  |
|---------------------------|-------------------------|---|---|---|---|--|
|                           | 1                       | 2 | 3 | 4 | 5 |  |
| Helical gearbox E         | 2                       | К | J | 8 | 0 |  |
| Helical gearbox D         | 2                       | К | J | 8 | 2 |  |
| Helical gearbox Z         | 2                       | К | J | 8 | 1 |  |
| Parallel shaft gearbox FD | 2                       | К | J | 8 | 4 |  |
| Parallel shaft gearbox FZ | 2                       | К | J | 8 | 3 |  |
| Bevel gearbox B, K        | 2                       | К | J | 8 | 5 |  |
| Helical worm gearbox C    | 2                       | К | J | 8 | 6 |  |

#### Note

In addition to these operating instructions, special contractual agreements and technical documentation apply to a special gearbox design and the associated supplementary equipment.

Please refer to the other operating instructions supplied with the product.

The described gearboxes correspond to the state-of-the-art at the time these operating instructions were printed.

Siemens AG reserves the right to change individual components and accessory parts in the interest of further development. The changes are designed to improve performance and safety. The significant features are retained. The operating instructions are updated regularly with new contents.

The latest versions of the operating instructions, the declaration of incorporation and the declarations of conformity are available in electronic form in the Industry Online Support (<u>https://support.industry.siemens.com/cs/ww/en/ps/13424/man</u>).

You can find the contact data of your Technical Support in the Database of contacts at Siemens AG (<u>www.siemens.com/yourcontact</u>).

If you have any technical questions, please contact Technical Support (<u>https://support.industry.siemens.com/cs/ww/en/sc/2090</u>).

Europe and Africa Telephone: +49 (0) 911 895 7222 support.automation@siemens.com

America Telephone: +1 800 333 7421 support.america.automation@siemens.com

Asia / Australia / Pacific Telephone: +86 400 810 4288 support.asia.automation@siemens.com

#### Valid operating instructions for SIMOGEAR

- BA 2030 operating instructions for SIMOGEAR gearboxes
- BA 2031 operating instructions for permissible mounting position deviations of SIMOGEAR gearboxes
- BA 2330 operating instructions for LA/LE/LES motors for mounting on SIMOGEAR gearboxes
- BA 2535 operating instructions for SIMOGEAR gearboxes for monorail conveyors

# 11.3.2 Use for the intended purpose

The SIMOGEAR gearboxes described in these operating instructions have been designed for stationary use in general engineering applications.

Unless otherwise agreed, the gearboxes have been designed for use in plants and equipment in industrial environments.

The gearboxes have been built using state-of-the-art technology and are shipped in an operationally reliable condition. Changes made by users could affect this operational reliability and are not permissible.

#### Note

The data on the rating plate assumes an installation altitude of up to 1 000 m above sea level.

The permissible ambient temperature is stamped on the rating plate.

For different installation altitudes and ambient temperatures, contact Technical Support.

The gearboxes have been designed solely for the application described in the Technical data (Page 441). Do not operate the gearbox outside the specified power limit. Other operating conditions must be contractually agreed.

Do not climb on the gearbox. Do not place any objects on the gearbox.

# 11.3.3 General technical description

The gearbox is supplied with one, two or three transmission stages.

The gearbox is suitable for various mounting positions. Observe the correct oil level.

#### **Gearbox housing**

The housings for frame sizes 19 and 29 are made of die-cast aluminum.

Depending on the gearbox type, housings of frame sizes 39 and 49 are made of die-cast aluminum or cast iron.

Table 11-30 Housing material

| Gearbox type             | Frame size | Frame size |           |  |  |  |
|--------------------------|------------|------------|-----------|--|--|--|
|                          | 39         | 39A        | 49        |  |  |  |
| Helical gearbox E        | Cast iron  |            | Cast iron |  |  |  |
| Helical gearbox D/Z      | Aluminum   |            | Cast iron |  |  |  |
| Parallel shaft gearbox F | Cast iron  |            | Cast iron |  |  |  |
| Bevel gearbox B          | Aluminum   |            | Aluminum  |  |  |  |
| Bevel gearbox K          | Cast iron  |            | Cast iron |  |  |  |
| Helical worm gearbox C   |            | Aluminum   | Cast iron |  |  |  |

From frame size 59, the gearbox housings are made of cast iron.

#### **Geared components**

The geared components are hardened and ground.

For the helical worm gearbox, the worm is hardened and ground. The gear is manufactured from high-quality bronze.

The bevel gear stage of the bevel gearbox is lapped in pairs.

#### Lubrication

The geared components are supplied with adequate lubricant by means of splash lubrication.

#### Shaft bearings

All shafts are mounted in rolling bearings. The rolling bearings are lubricated using splash lubrication or oil-spray lubrication. Bearings that are not supplied with lubricant are closed and grease-lubricated.

# 11.3.4 Shaft seals

The shaft sealing rings on the output side prevent lubricant from escaping from the housing at the shaft outlet and prevent pollution from entering the housing.

The optimum use of the seals depends on the ambient conditions and the lubricant being used.

#### Radial shaft sealing ring

A high-quality radial shaft sealing ring is used as standard seal. The ring is provided with an additional dust lip to protect against contaminants from outside.

Permitted oil sump temperatures  $-40^{\circ}$  C to  $+80^{\circ}$  C.

#### Seal for a longer service life (optional)

The radial shaft sealing ring with dust lip has an additional buffer axial seal towards the inside of the gearbox. The sealing system has a high degree of reliability as a result of the insensitivity with respect to contaminations in the oil.

Permitted oil sump temperatures  $-40^{\circ}$  C to  $+100^{\circ}$  C.

#### Seal to handle increased environmental stress (optional)

This seal is equipped with an additional fiber disk. The disk so provides increased protection against higher environmental stress caused by dirt and dust.

Permitted oil sump temperatures  $-20^{\circ}$  C to  $+80^{\circ}$  C.

#### High temperature-resistant seal (optional)

The deployed radial shaft sealing rings are made of a temperature-resistant material.

Permitted oil sump temperatures -25° C to +110° C.

# 11.3.5 Cooling

## NOTICE

## Dust deposits prevent heat radiation

Dust deposits prevent heat radiation and cause a high housing temperature.

Keep the gearbox free from dirt, dust, etc.

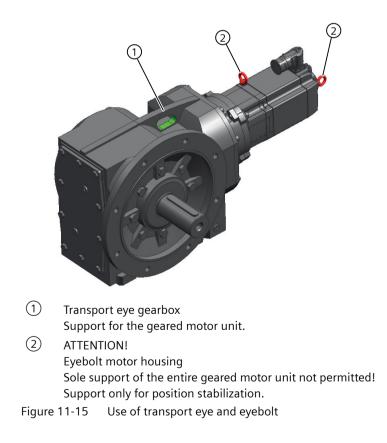
The gearbox does not normally require additional cooling. The generously dimensioned housing surface is sufficient for dissipating heat losses where there is free convection. If the housing temperature exceeds a value of +80 °C, please contact Technical Support.

# 11.3.6 Fastening for suspended transport

# MARNING

## Inadequately fastened gearboxes or geared motors can break loose

Use only the transport eye or eyebolt of the gearbox to transport the gearbox or geared motor. Because they are designed only for the weight of the gearbox or geared motor, it is not permissible to add additional loads.


Do not rig eyebolts to the front threads at the shaft ends for transportation purposes.

Existing eyebolts and cast-on lifting eyes on the motor housing are not designed to support the entire unit. If you lift the unit only by the eyebolts or lifting eyes on the motor housing, the eyebolts may be ripped out of the threads or the lifting eyes may break off and cause serious or fatal injury. Use eyebolts or lifting eyes on the motor housing only for position stabilization.

Observe the maximum specified load on the eyebolt. Stress applied transversely to the ring plane is not permissible. Do not use bent or damaged eyebolts.

If necessary, use additional, suitable lifting accessories for transport or during installation.

When attaching by a number of chains and ropes just two strands must be sufficient to bear the entire load. Secure lifting accessories against slipping.



| Thread size | m   | d <sub>3</sub> | Thread size | m     | d <sub>3</sub> |
|-------------|-----|----------------|-------------|-------|----------------|
|             | kg  | mm             |             | kg    | mm             |
| M8          | 140 | 36             | M20         | 1200  | 72             |
| M10         | 230 | 45             | M24         | 1800  | 90             |
| M12         | 340 | 54             | M30         | 3 200 | 108            |
| M16         | 700 | 63             | -           | -     | -              |

Table 11-31 Maximum load of the eyebolt on the gearbox

The eyebolt corresponds to DIN 580.

#### Procedure

- 1. Transport the gearbox or geared motor by the lifting eyes or eyebolts on the gearbox housing.
- 2. Lifting eyes and eyebolts are only designed for the weight of the gearbox or geared motor and it is not permissible to add additional loads such as built-on parts on the gearbox to the lifting eyes and eyebolts.
- 3. Remove any eyebolts that are no longer required after transport.

# 11.3.7 Storage

## 11.3.7.1 General information for storage

# 

## Danger of serious injuries caused by falling objects

Danger of damage to the gearbox when stacked

Do not stack gearboxes or geared motors on each other.

#### NOTICE

#### Failure of the external protection

Mechanical damage, chemical damage and thermal damage, such as scratches, acids, alkalis, sparks, welding beads and heat cause corrosion.

Do not damage the paint finish.

Unless contractually agreed otherwise, the guarantee period for the standard preservative lasts 6 months from the date of delivery.

In the case of storage in transit over 6 months, special arrangements must be made for preservation. Please contact Technical Support.

Store the gearbox or geared motor in dry, dust-free rooms that are maintained at a constant temperature.

The storage location must be vibration- and shock-free.

The free shaft ends, sealing elements and flange surfaces must have a protective coating.

# 11.3.7.2 General notes for storage up to 36 months

Store the gearbox or geared motor in dry, dust-free rooms that are maintained at a constant temperature. Special packing is then not necessary.

If such premises are not available, pack the gearbox or the geared motor in plastic film or air-tight sealed film and materials. The films and materials must be able to accept moisture. Cover them to provide protection against heat, direct sunlight and rain.

The permissible ambient temperature is -25 °C to +50 °C.

The life of the corrosion protection is 36 months from delivery.

# 11.3.7.3 Gearbox filled with operating oil and anti-corrosive agent

#### NOTICE

Damage to the gearbox caused by incorrect oil quantities

Check the oil level before commissioning.

Observe the information and procedures for Checking the oil level (Page 511).

The gearbox is filled with oil corresponding to the mounting position so that it is ready for operation, and is sealed airtight using a screw plug or with a pressure breather valve with transport fixture.

For storage up to 36 months, a VCI anti-corrosion agent (Volatile Corrosion Inhibitor) is added.

## 11.3.7.4 Gearbox completely filled with oil

#### NOTICE

Damage to the gearbox caused by incorrect oil quantities

Prior to commissioning, remove excessive oil until it has the correct oil level.

Observe the information and procedures for Correcting the oil level (Page 511).

When biodegradable oils or oils for the food-processing sector are used, the gearbox is filled completely with operating oil. The gearbox is closed air-tight with a sealing plug or a pressure venting with transport fixture.

Do not lower the oil level during short-time commissioning for 10 minutes in no-load operation.

# 11.3.8 Gearbox with foot mounting

# NOTICE

#### Impermissible housing loadings when unevenness present

Do not subject the gearbox to excessive stress when tightening the fixing screws.

The foundation must be level and free from dirt.

The deviation in flatness of the gearbox's contact surface may not exceed the following values:

For gearboxes up to frame size 89: 0.1 mm

For gearboxes from frame size 109: 0.2 mm

The foundation should be designed in such a way that no resonance vibrations are created and no vibrations are transmitted from adjacent foundations.

The foundation structure on which the gearbox is to be mounted must be torsionally rigid. It must be dimensioned according to the weight and torque, taking into account the forces acting on the gearbox. If the substructure is too weak, it will cause radial or axial displacement offset during operation that cannot be measured at a standstill.

If the gearbox is fastened to a concrete foundation, use foundation blocks for the appropriate recesses.

Align and grout the slide rails into the foundation.

Align the gearbox carefully with the units on the input and output side. Take into account the elastic deformation due to operating forces.

Prevent displacement from external forces due to lateral impacts.

Use stud bolts or headless screws of property class 8.8 or higher for the mounting foot. Observe the tightening torque.

| Thread size | Helical gearbox | [          | Parallel shaft | Bevel gearbox | Helical worm |  |  |  |  |
|-------------|-----------------|------------|----------------|---------------|--------------|--|--|--|--|
|             | E               | D/Z        | gearbox F      | В, К          | gearbox C    |  |  |  |  |
|             | Frame size      |            |                |               |              |  |  |  |  |
| M8          | -               | 19, 29, 39 | 29, 39         | B19, B29, B39 | 29           |  |  |  |  |
| M10         | 39              | -          | 49             | B49, K39, K49 | 39, 49       |  |  |  |  |
| M12         | 49              | 49, 59, 69 | 69, 79         | K69, K79      | 69           |  |  |  |  |
| M16         | 69, 89          | 79, 89     | 89             | К89           | 89           |  |  |  |  |
| M20         | -               | -          | -              | K109          | -            |  |  |  |  |

Table 11-32 Thread size of the fixing screw

# 11.3.9 Gearbox with flange mounting

#### Note

Siemens AG recommends an anaerobic adhesive to enhance the friction lock between flange and mounting surface.

| Thread<br>size | Flange     | Helical gearbox<br>E, D/Z | Parallel shaft<br>gearbox F | Bevel gearbox<br>B, K | Helical worm<br>gearbox C |
|----------------|------------|---------------------------|-----------------------------|-----------------------|---------------------------|
|                |            | Frame size                |                             |                       |                           |
| M6             | A120       | 19, 29, 39                | 29                          | B19, B29              | 29                        |
| M8             | A140, A160 | 19, 29, 39, 49, 59        | 29, 39                      | B29, B39, K39         | 29, 39                    |
| M10            | A200       | 39, 49, 59, 69            | 49                          | B39, B49, K49         | 49, 69                    |
| M12            | A250, A300 | 49, 59, 69, 79, 89        | 69, 79, 89                  | K69, K79, K89         | 89                        |
| M16            | A350       | 79, 89                    | -                           | K109                  | -                         |
| M16            | A450       | 89                        | -                           | -                     | -                         |

Table 11-33 Thread size of the fixing screw

Use screws / nuts of property class 8.8 for gearboxes with a flange-mounted design.

Note the following exceptions:

| Gearbox | Flange | Prope | Property class for motor frame size |      |      |     |     |     |     |     |     |     |
|---------|--------|-------|-------------------------------------|------|------|-----|-----|-----|-----|-----|-----|-----|
| size    |        | 90    | 100                                 | 112  | 132  | 160 | 180 | 200 | 225 | 250 | 280 | 315 |
| 39      | A160   | 10.9  | 10.9                                | 10.9 | -    | -   | -   | -   | -   | -   | -   | -   |
| 49      | A200   | 8.8   | 10.9                                | 10.9 | 10.9 | -   | -   | -   | -   | -   | -   | -   |
| 69      | A250   | 8.8   | 8.8                                 | 8.8  | 10.9 | -   | -   | -   | -   | -   | -   | -   |
| 79      | A250   | 8.8   | 8.8                                 | 8.8  | 10.9 | -   | -   | -   | -   | -   | -   | -   |
| 89      | A300   | 8.8   | 10.9                                | 10.9 | 10.9 | -   | -   | -   | -   | -   | -   | -   |
| 109     | A350   | 8.8   | 8.8                                 | 8.8  | 8.8  | -   | -   | -   | -   | -   | -   | -   |

Table 11-34 Property class of the fixing screw for FF/FAF and KF/KAF

Table 11-35 Property class of the fixing screw / nut for EZ, EF, DZ/ZZ and DF/ZF

| Gearbox size |        | Flange | Property class     |
|--------------|--------|--------|--------------------|
| E            | D/Z    |        |                    |
| 39           | 29, 39 | A120   | 10.9 <sup>1)</sup> |
| -            | 49     | A140   | 10.9               |
| 49           | 59     | A160   |                    |
| 69           | 69     | A200   |                    |
| 89           | 79     | A250   |                    |
| -            | 89     | A300   |                    |

1) Use suitable washers under the nuts / screw heads

# 11.3.10 Gearboxes in foot or flange version

# NOTICE

Impermissible housing loadings caused by incorrectly installed add-on elements

Do not subject the gearbox housing to excessive stress by adding add-on elements to the foot or flange.

Add-on elements must not transmit forces, torques, and vibrations to the gearbox.

To prevent strains on the housing, fasten the gearbox only on the flange or the foot fastening for force and torque transmission. Refer to Gearbox with foot mounting (Page 489).

The second mounting option (foot or flange) is intended for add-on elements, e.g. protection covers with an intrinsic weight of up to max. 30 % of the weight of the gearbox.

# 11.3.11 Mounting an input or output element on the gearbox shaft

# 

## Risk of burns caused by hot parts

Do not touch the gearbox without protection.

## NOTICE

## Damage to shaft sealing rings caused by solvent

Avoid any contact of solvent or benzine with the shaft sealing rings.

## NOTICE

## Damage to shaft sealing rings caused by heating

Use thermal shields to protect shaft sealing rings from heating above 100  $^\circ\mathrm{C}$  due to radiant heat.

## NOTICE

## Premature wear or material damage due to misalignment

Misalignment caused by excessive angular or axis displacement to the connecting shaft ends. Ensure precise alignment of the individual components.

# NOTICE

## Damage caused by improper handling

Bearings, housing, shaft and locking rings are damaged due to improper handling.

Do not use impacts or knocks to force the input and output elements to be mounted onto the shaft.

#### Note

Deburr the parts of elements to be fitted in the area of the hole or keyways.

Recommendation: 0.2 x 45°

Where couplings are to be fitted in a heated condition, observe the specific operating instructions for the coupling. Unless otherwise specified, apply the heat inductively using a torch or in a furnace.

Use the center holes in the shaft end faces.

Use a fitting device to fit the input or output elements.

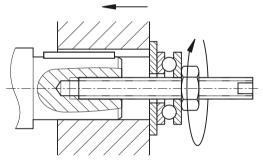
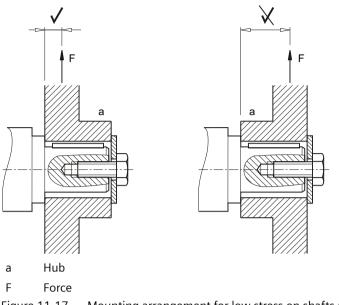




Figure 11-16 Example of a fitting device

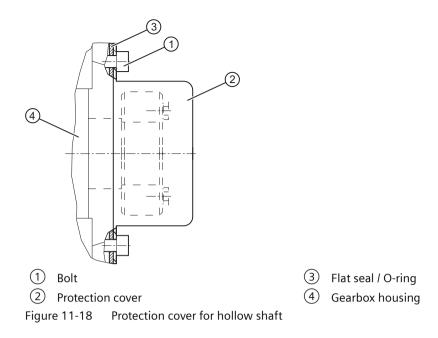
Observe the correct mounting arrangement to minimize stress on shafts and bearings due to lateral forces.

Correct

Incorrect






## Procedure

- 1. Use either benzine or solvent to remove the anti-corrosion protection from the shaft ends and flanges or remove the applied protective skin.
- 2. Fit the drive input and output elements to the shafts. Fasten the elements when necessary.

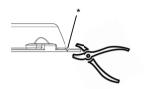
# 11.3.12 Removing and installing the protection cover

The protection cover of the hollow shaft is delivered ready-fitted to the gearbox flange. Remove the protection cover to install the output shaft.

The plastic protection cover of the hollow shaft is supplied loose as kit.



## Procedure


#### Premounted protection cover

- 1. Release the screws ① and remove the protection cover ② together with the flat gasket or O-ring ③.
- 2. Mount the output shaft.
- 3. Use a suitable cleaning agent to clean the contact surface of the protection cover (2) on the gearbox.
- 4. Ensure that the flat seal or the O-ring 3 is correctly seated.
- 5. Apply medium-strength adhesive, e.g. Loctite 243 to the screws ①.
- 6. Screw on the protection cover (2).
- 7. Protect all remaining bare areas with a suitable permanent anti-corrosive agent.

## Protection cover (supplied loose)

When using the plastic protection cover for gearbox F49, the cover must first be brought into the correct shape.

When using the plastic protection cover for other gearboxes, it is not necessary to bring the cover into the required shape; in this case, start with Point 2.



Preset breaking point

Figure 11-19 Preset breaking point for F49

1. F49: Break the cover at the preset breaking point (see diagram)

- 2. Mount the output shaft.
- 3. Use a suitable cleaning agent to clean the contact surface of the protection cover (2) on the gearbox.
- 4. Ensure that the O-ring or flat seal ③ is correctly seated.
- 5. Screw on the protection cover ② with a tightening torque of 10-15 Nm.
- 6. Protect all remaining bare areas with a suitable permanent anti-corrosive agent.

# 11.3.13 General information on installing the shaft-mounted gearbox

## NOTICE

#### Damage to shaft sealing rings caused by solvent

Avoid any contact of solvent or benzine with the shaft sealing rings.

## NOTICE

## Subjecting stress to the hollow shaft causes bearing failure

Skewing or stressing the hollow shaft increases the loading. This can cause bearing failure.

The hollow shaft must be flush with the machine shaft to avoid misalignment.

Do not subject the hollow shaft to axial and radial stress.

## NOTICE

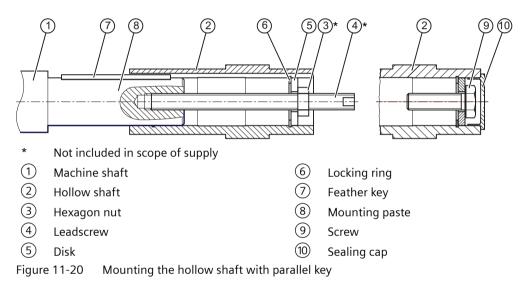
#### For shrink disks:

# Lubricants in the area between the hollow shaft and machine shaft impair torque transmission

Keep the bore in the hollow shaft and the machine shaft completely grease-free.

Do not use impure solvents and soiled cleaning cloths.

#### Note


Coat the contact surfaces with the mounting paste supplied with the product or any suitable lubricant to prevent frictional corrosion.

#### Note

Observe the permissible concentricity tolerance of the cylindrical shaft extension of the machine shaft to the housing axle according to DIN 42955.

# 11.3.14 Hollow shaft with feather key

## 11.3.14.1 Mounting the hollow shaft with parallel key



Instead of the nut and threaded spindle shown in the diagram, other types of equipment such as hydraulic lifting equipment may be used.

#### Procedure

- 1. Using benzine or a solvent, remove the anti-corrosion protection from the shaft ends and flanges.
- 2. Check the seats or edges of the hollow and machine shafts for any damage. Contact Technical Support if you notice any damage.
- 3. Apply the mounting paste provided ① to the machine shaft ⑧. Apply the paste uniformly. Carefully wipe away the rest at the shaft sealing ring of the gearbox.
- 4. Fit the gearbox using the disk (5), threaded spindle (4) and nut (3). Support is provided by the hollow shaft (2).

- 5. Replace the nut ③ and the threaded spindle ④ with a screw ⑨. Tighten the bolts ⑨ to the specified torque.
- 6. Close the open hollow shaft end using a sealing cap 10.

#### 

Table 11-36 Tightening torque for the screw

| Thread size             | M5 | M6 | M8 | M10 | M12 | M16 | M20 | M24 | M30 |
|-------------------------|----|----|----|-----|-----|-----|-----|-----|-----|
| Tightening torque in Nm | 5  | 8  | 8  | 14  | 24  | 60  | 120 | 200 | 400 |

## 11.3.14.2 Removing the hollow shaft with parallel key

# MARNING WARNING

#### Inadequately fastened gearboxes or geared motors can break loose

Before driving out the machine shaft, fasten a suitably dimensioned means of absorbing load to the gearbox.

Slightly pretension the pulling equipment so that the gearbox does not drop onto it when the plug-in shaft is released.

#### NOTICE

#### Subjecting stress to the hollow shaft causes bearing failure

It is essential to prevent misalignment when removing the unit.

#### NOTICE

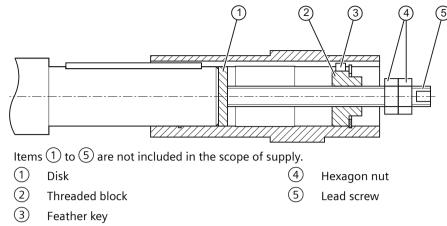
#### **Excessive forces during removal**

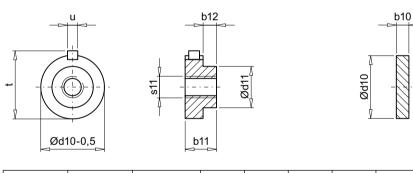
Excessive forces can occur during removal of the hollow shaft via the housing.

Stresses in the hollow shaft can lead to bearing failure and damage to the gearbox housing.

#### Note

If frictional corrosion has occurred on the seat surfaces, use rust solvent to facilitate the removal of the gearbox. Allow an adequately long time for the rust solvent to take effect.



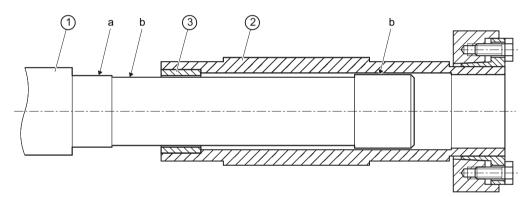


Figure 11-21 Removing the hollow shaft with parallel key

## Procedure

- 1. Remove the axial locking element from the hollow shaft.
- 2. Drive out the machine shaft using the disk ①, threaded block ②, parallel key ③, threaded spindle ⑤ and hexagon nuts ④.

#### 

## Design suggestion for threaded block and disk




| Gearbox    | Frame<br>size | Hollow<br>shaft Ø | b10 | b11 | b12 | d10  | d11 | s11 | t <sub>max</sub> | u  |
|------------|---------------|-------------------|-----|-----|-----|------|-----|-----|------------------|----|
|            |               | mm                | mm  | mm  | mm  | mm   | mm  | mm  | mm               | mm |
| В          | 19            | 20                | 3   | 15  | 10  | 19.9 | 10  | M6  | 22.5             | 6  |
| В, С       | 29            | 20                | 3   | 15  | 10  | 19.9 | 10  | M6  | 22.5             | 6  |
| B, F       | 29            | 25                | 3   | 15  | 10  | 24.9 | 16  | M10 | 28               | 8  |
| С          | 39            | 25                | 3   | 15  | 10  | 24.9 | 16  | M10 | 28               | 8  |
| B, K, F, C | ]             | 30                | 6   | 15  | 10  | 29.9 | 18  | M10 | 33               | 8  |
| В          |               | 35                | 6   | 15  | 10  | 34.9 | 24  | M12 | 38               | 10 |
| В          |               | 40                | 6   | 15  | 10  | 39.9 | 28  | M16 | 43               | 12 |
| С          | 49            | 30                | 6   | 15  | 10  | 29.9 | 18  | M10 | 33               | 8  |
| K, F, C    |               | 35                | 6   | 15  | 10  | 34.9 | 24  | M12 | 38               | 10 |
| В          |               | 40                | 6   | 15  | 10  | 39.9 | 28  | M16 | 43               | 12 |

| Gearbox | Frame<br>size | Hollow<br>shaft Ø | b10 | b11 | b12 | d10  | d11 | s11 | t <sub>max</sub> | u  |
|---------|---------------|-------------------|-----|-----|-----|------|-----|-----|------------------|----|
|         |               | mm                | mm  | mm  | mm  | mm   | mm  | mm  | mm               | mm |
| K, F, C | 69            | 40                | 6   | 20  | 9   | 39.9 | 28  | M16 | 43               | 12 |
| С       |               | 45                | 6   | 20  | 9   | 44.9 | 36  | M16 | 48               | 14 |
| K, F    | 79            | 40                | 6   | 20  | 9   | 39.9 | 28  | M16 | 43               | 12 |
| K, F, C | 89            | 50                | 7   | 20  | 10  | 49.9 | 36  | M16 | 53.5             | 14 |
| С       |               | 60                | 7   | 20  | 10  | 59.9 | 45  | M20 | 64               | 18 |
| К       | 109           | 60                | 10  | 24  | 14  | 59.9 | 45  | M20 | 64               | 18 |

# 11.3.15 Hollow shaft with shrink disk

# 11.3.15.1 Mounting the hollow shaft with shrink disk



- a Greased
- b Absolutely grease-free
- \* Not included in scope of supply
- Machine shaft
- 2 Hollow shaft
- 3 Bushing

Figure 11-22 Mounting the hollow shaft with shrink disk

# Procedure

- 1. Using benzine or a solvent, remove the anti-corrosion protection from the shaft ends and flanges.
- 2. Check the seats or edges of the hollow and machine shafts for damage. Contact Technical Support if you notice any damage.
- 3. Mount the gearbox with the shrink disk shaft onto the machine shaft. Carefully ensure the correct position and that the shrink disk seat completely covers the machine shaft.

# 11.3.15.2 Mounting the shrink disk

# 

#### Risk of injury due to freely rotating parts

Fit a cover cap or protection cover.

#### NOTICE

#### Lubricants in the shrink disk seat impair torque transmission

Keep the bore in the hollow shaft and the machine shaft completely grease-free.

Do not use impure solvents and soiled cleaning cloths.

## NOTICE

## Plastic deformation of the hollow shaft caused by tightening the clamping bolts

Plastic deformation of the hollow shaft when tightening the clamping bolts before fitting the machine shaft.

First fit machine shaft. Then tighten the clamping bolts.

## NOTICE

## Avoid overloading the individual bolts

Do not exceed the maximum tightening torque for the clamping bolt.

Frame sizes 19 - 69: tighten clamping bolts 6

Frame sizes 79 - 109:

It is important that the face surfaces of the outer ring 4 and the inner ring 5 are flush with one another. If they are not flush with one another when tensioning, check the tolerance of the plug-in shaft.

## Note

The shrink disk, item (3), is delivered ready for installation.

Do not dismantle it before the initial fitting.

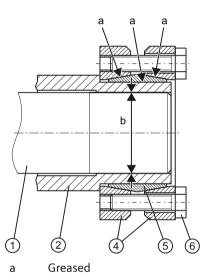
#### Note

The machine shaft material must comply with the following criteria in order to safely and reliably transfer the forces and torques.

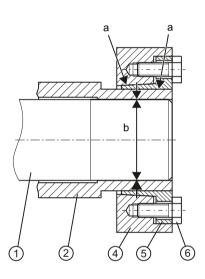
- Yield point Re  $\geq$  360 N/mm<sup>2</sup>
- Modulus of elasticity: approx. 206 kN/mm<sup>2</sup>
- No face end thread in the machine shaft because it would reduce the transferred torque

#### Note

The shrink-fitted disc connection fastens the hollow shaft axially on the machine shaft.


#### Note

Apply a thin layer of grease to the shrink disk seat on the hollow shaft.


#### Note

Coat with a suitable lubricant to prevent frictional corrosion of the contact surface on the customer's machine shaft in the vicinity of the bushing.

Frame sizes 19 - 69



- b Absolutely grease-free
- (1) Machine shaft
- 2 Hollow shaft
- (3) Shrink disk comprising items (4) (6)
- ④ Outer ring
- 5 Inner ring
- 6 Clamping bolt
- Figure 11-23 Mounting the shrink disk



Frame sizes 79 - 109

# Procedure

- 1. Push the shrink disk 3 onto the hollow shaft 2.
  - 3-part shrink disk up to the end stop for frame sizes 19 69.
  - 2-part shrink disk flush with the shaft end for frame sizes 79 109.
- 2. Tighten the clamping bolts (6), initially by hand. Align the shrink disk (3) so that the clamping flanges are plane-parallel with one other.
- 3. Use the torque wrench to turn each of the clamping bolts <sup>(6)</sup> equally by 1/6 revolution (not crosswise); repeat this procedure several times. Observe the tightening torque.
- 4. Attach the rubber cover or protection cover included in the scope of supply, see Removing and installing the protection cover (Page 493).

| Gearbox size | Thread size | Property class | Tightening torque |
|--------------|-------------|----------------|-------------------|
|              |             |                | Nm                |
| 19, 29       | M5          | 10.9           | 5                 |
| 39, 49, 69   | M6          | 10.9           | 12                |
| 79, 89       | M8          | 12.9           | 35                |
| 109          | M10         | 12.9           | 70                |

Table 11-37 Tightening torque for the clamping bolt

# 11.3.15.3 Pulling off the shrink disk

## Procedure

- 1. Successively release the clamping bolts <sup>(6)</sup> one after the other through a <sup>1</sup>/<sub>4</sub> turn each time using a wrench. Do not completely remove the bolts.
- 2. Withdraw the shrink disk from the hollow shaft.

#### Frame sizes 79 - 109:

If the outer ring does not come away from the inner ring, remove some of the clamping bolts and insert them into neighboring forcing-off threads.

You have withdrawn the shrink disk from the hollow shaft.

# 11.3.15.4 Cleaning and lubricating shrink disks

Soiled shrink disks must be cleaned and regreased prior to fitting.

Shrink disks that have been released need not be disassembled and regreased before being retensioned.

### Procedure

- 1. Only grease the inner friction surfaces of the shrink disks. To do this, use a solid lubricant with a friction coefficient of  $\mu = 0.04$ .
- 2. Use a paste containing  $MoS_2$  to grease the bolts, applying the paste to the thread and underneath the head.

Table 11-38Lubricants for shrink disks

| Lubricant                        | Sold as        | Manufacturer       |
|----------------------------------|----------------|--------------------|
| Molykote 321 R (lubricant paint) | Spray          | DOW Corning        |
| Molykote spray (powder spray)    |                |                    |
| Molykote G Rapid                 | Spray or paste |                    |
| Molykombin UMFT 1                | Spray          | Klüber Lubrication |
| Unimily P5                       | Powder         |                    |
| Aemasol MO 19 P                  | Spray or paste | A. C. Matthes      |

## 11.3.16 SIMOLOC assembly system

#### 11.3.16.1 General notes for the SIMOLOC assembly system

#### WARNING

#### Risk of injury due to freely rotating parts

Fit a cover cap or protection cover.

#### NOTICE

#### Damaged components impair the correct function of the gearbox

If any components are damaged, the correct function of the gearbox will no longer be ensured. Do not install any damaged gearbox components.

#### NOTICE

## Lubricant on the machine shaft 1 impairs the torque transmission

Keep the bore in the tapered bushing 9 and the machine shaft 1 completely grease-free.

Do not use impure solvents and soiled cleaning cloths.

#### NOTICE

#### Avoid overloading the individual bolts

Do not exceed the maximum tightening torque for the tightening bolts 4 und 10.

#### Note

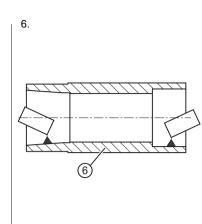
The SIMOLOC assembly system secures the hollow shaft axially on the machine shaft.

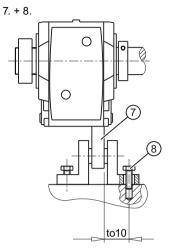
#### Note

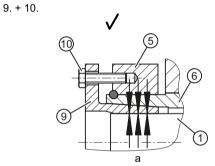
In the hollow shaft 6, oil the locating hole for the tapered bushing 9 and bronze bushing 2 lightly with the provided oil.

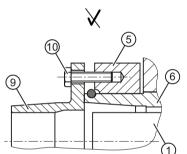
Oil type of the provided oil: CLP VG 68 DIN 51517-3

#### Note


The thrust collar (5) must be placed at the correct position as in the delivered state.

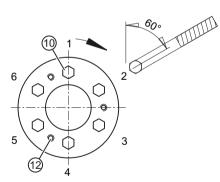

#### Note


Before installing the SIMOLOC, mount the torque arms  $\bigcirc$  on the gearbox.


## 11.3.16.2 Installing SIMOLOC

4. + 5. to10 (1) (2) (3)










Ο

11.



- a Absolutely grease-free
- ① Machine shaft
- 2 Bronze bushing
- ③ Clamping ring
- (4) Tightening bolt for the clamping ring
- 5 Thrust collar
- 6 Hollow shaft

Figure 11-24 Installing SIMOLOC

⑦ Torque arm

(11

8 Screw

12.

- 9 Tapered bushing
- 10 Tightening bolt for the tapered bushing

to10

- (1) Protection cover / cover cap
- ① Threaded hole for the tightening bolt ① during disassembly

### Procedure

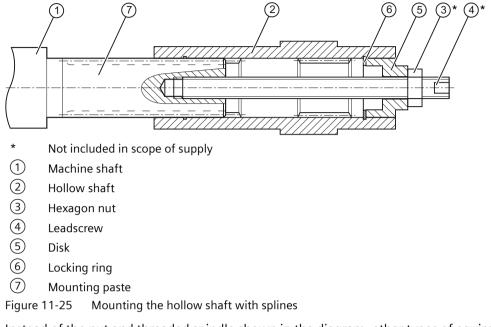
- 1. Attach the torque arm ⑦ to the gearbox, see Torque arms with slip-on gearboxes (Page 509).
- 2. Remove the corrosion protection coating using white spirit or a solvent on:
  - The shaft ends of the machine shaft  $\bigcirc$
  - The clamping ring  $\Im$
  - The bronze bushing ②.
- 3. Check the seats or edges of the hollow shaft (6) and the machine shaft (1) for damage. Please contact Technical Support if you notice any damage.
- 4. Place the clamping ring ③ on the bronze bushing ②.
- 5. Position the bronze bushing 2 with the clamping ring 3 on the machine shaft 1. Observe the tightening torque of the tightening bolt 4 and the tolerance dimension to10.
- 6. Oil lightly the locating holes in the hollow shaft (6) for the tapered bushing (9) and bronze bushing (2). Remove any excessive oil using a clean cloth.
- 7. Push the gearbox with the installed torque arm  $\bigcirc$  on the machine shaft  $\bigcirc$  against the clamping ring  $\bigcirc$ .
- 8. Tighten the torque arm ⑦ with the bolts ⑧ only gently because the gearbox must have clearance for the subsequent mounting.
- 9. Ensure that the thrust collar (5) is placed at the correct position. If the thrust collar (5) is not placed at the correct position, bring the ring (5) into the correct position by tightening the tightening bolts (10) with turned tapered bushing (9).
- 10. Place the tapered bushing (9) on the machine shaft (1).
- 11. Use the torque wrench to turn each of the tightening bolts (10) equally (not crosswise), repeating this procedure several times. Observe the tightening torque of the tightening bolt (10).
- 12. Tighten the bolts (8) of the torque-arm fastening, see Torque arms with slip-on gearboxes (Page 509).
- 13. Attach the rubber cover or protection cover (1) included in the scope of delivery, see Removing and installing the protection cover (Page 493).

#### 

| Gearbox type | Size | Tolerance dimen-<br>sion to10 | Thread size ④       | Tightening torque |
|--------------|------|-------------------------------|---------------------|-------------------|
|              |      | mm                            | Strength class 10.9 | Nm                |
| F, B, C      | 29   | 0.6 2.1                       | M6                  | 15                |
| F, B, K, C   | 39   | 0.7 2.2                       |                     |                   |
| F, B, K, C   | 49   | 0.8 2.6                       |                     |                   |
| F, K, C      | 69   | 0.7 2.5                       | M8                  | 35                |
| F, K         | 79   | 1.4 3.2                       |                     |                   |
| F, K, C      | 89   | 1.5 3.4                       |                     |                   |

Table 11-39 Tolerance dimension, tightening bolt ④ tightening torque

| Gearbox type | Size | Thread size 🔟       | Tightening torque |
|--------------|------|---------------------|-------------------|
|              |      | Strength class 12.9 | Nm                |
| F, B, C      | 29   | M5                  | 10                |
| F, B, K, C   | 39   |                     |                   |
| F, B, K, C   | 49   | M6                  | 16                |
| F, K, C      | 69   |                     |                   |
| F, K         | 79   | M8                  | 38                |
| F, K, C      | 89   |                     |                   |


Table 11-40 Tightening bolt (10) tightening torque

## 11.3.16.3 Removing SIMOLOC

#### Procedure

- 1. Remove all bolts 10 completely.
- 2. Screw the bolts 10 into the threaded holes 12.
- 3. Use the torque wrench to turn each of the bolts (1) equally (not crosswise), repeating this procedure several times. Observe the tightening torque of the bolt (1). Repeat the task until the tapered bushing (9) has been freed.
- 4. Unscrew the bolts 0 and remove the tapered bushing 9.
- 5. Lower the gearbox from the machine shaft  $\bigcirc$ .

## 11.3.17 Hollow shaft with splines



Instead of the nut and threaded spindle shown in the diagram, other types of equipment such as hydraulic lifting equipment may be used.

#### Procedure

- 1. Using benzine or a solvent, remove the anti-corrosion protection from the shaft ends and flanges.
- 2. Check the seats or edges of the hollow and machine shafts for damage. Please contact Technical Support if you notice any damage.
- 3. Apply the mounting paste  $\bigcirc$  to the machine shaft  $\bigcirc$ . Apply the paste uniformly.
- 4. Fit the gearbox using the disk (5), threaded spindle (4) and nut (3). Support is provided by the hollow shaft (2).
- 5. Replace the nut (3) and the threaded spindle (4) with a screw. Tighten the bolts to the specified torque.

Table 11-41 Tightening torque for the screw

| Thread size             | M5 | M6 | M8 | M10 | M12 | M16 | M20 | M24 | M30 |
|-------------------------|----|----|----|-----|-----|-----|-----|-----|-----|
| Tightening torque in Nm | 5  | 8  | 8  | 14  | 24  | 60  | 120 | 200 | 400 |

## 11.3.18 Torque arms with slip-on gearboxes

### 11.3.18.1 General information regarding torque arms

Torque arms can absorb the reaction torque and the weight of the gearbox.

#### NOTICE

#### Dangerous transient torques due to excess backlash

Take care to prevent the torque arm from causing excessive constraining forces, e.g. due to the driven shaft running out-of-true.

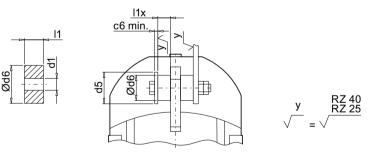
### NOTICE

#### Impermissible gearbox loading caused by incorrect mounting

Do not tension torque arms when mounting.

#### NOTICE

#### Damage to the rubber elements caused by solvent


Solvents, oils, greases, and fuels damage rubber elements.

Avoid contact at all times.

## 11.3.18.2 Mounting torque arms on parallel shaft gearboxes

We recommend using pretensioned, damping rubber elements.

Fixing accessories such as brackets, bolts, nuts, etc. are not included in the scope of supply.



| Figure 11-26 | Suggestion for | mounting torque a | arms on F.29 - F.89 |
|--------------|----------------|-------------------|---------------------|
|              |                |                   |                     |

| Frame size | Rubber buffer    |           |    | Washer |    |                   |
|------------|------------------|-----------|----|--------|----|-------------------|
|            | Unten-<br>sioned | Tensioned |    |        |    |                   |
|            | 11               | l1x       | d6 | d1     | d5 | c6 <sub>min</sub> |
|            | mm               | mm        | mm | mm     | mm | mm                |
| 29         | 15               | 14.0      | 30 | 10.5   | 40 | 4                 |
| 39         |                  | 13.5      |    |        |    |                   |

| Frame size | ize Rubber buffer |           |    |      | Washer |                   |
|------------|-------------------|-----------|----|------|--------|-------------------|
|            | Unten-<br>sioned  | Tensioned |    |      |        |                   |
|            | 11                | l1x       | d6 | d1   | d5     | c6 <sub>min</sub> |
|            | mm                | mm        | mm | mm   | mm     | mm                |
| 49         | 20                | 18.5      | 40 | 12.5 | 45     | 6                 |
| 69         |                   | 18.5      |    |      | 50     |                   |
| 79         |                   | 17.5      |    |      |        |                   |
| 89         | 30                | 28        | 60 | 21   | 75     | 8                 |

## 11.3.18.3 Mounting torque arms on bevel gearboxes and helical worm gearboxes

## NOTICE

#### Impermissible loading caused by incorrect mounting

The torque arm bush must be supported by bearings on both sides.

After assembly, the sleeve must have some axial play.

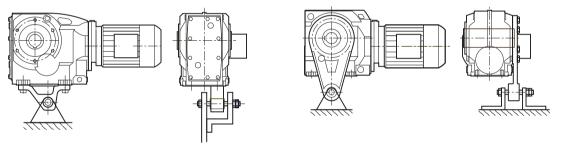



Figure 11-27 Mounting suggestion for torque arm on foot and flange

The torque arm can be fitted in various positions, depending on the hole circle pitch.

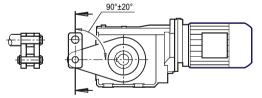



Figure 11-28 Toggle lever design

For a toggle lever design, derive the force in the range of  $90^{\circ} \pm 20^{\circ}$ .

## Procedure

- 1. Clean the contact surfaces between the housing and the torque arm.
- 2. Tighten the bolts to the specified torque.

#### 

Table 11-42 Tightening torque for screws of strength class 8.8

| Thread size             | M8 | M10 | M12 | M16 | M20 | M24 | M36   |
|-------------------------|----|-----|-----|-----|-----|-----|-------|
| Tightening torque in Nm | 25 | 50  | 90  | 210 | 450 | 750 | 2 600 |

## 11.3.19 General information for commissioning

## 

### Unintentional starting of the drive unit

Secure the drive unit to prevent it from being started up unintentionally.

Attach a warning notice to the start switch.

# M WARNING

### Risk of slipping on oil

Remove any oil spillage immediately with an oil-binding agent in compliance with environmental requirements.

## Checking the pressure breather valve

Check that the breather valve is activated.

If the breather valve has a transport fixture, it must be removed before commissioning.

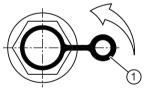



Figure 11-29 Pressure breather valve with securing clip

Remove the transport fixture by pulling the securing clip  $\bigcirc$  in the direction of the arrow.

## 11.3.20 Checking the oil level prior to commissioning

Check the oil level before commissioning. Correct the oil quantity when required.

Siemens AG recommends a complete oil change after a storage time longer than 24 months:

- For gearboxes with long-term preservation.
- For gearboxes supplied completely filled with oil.

Please observe Checking and changing lubricants (Page 517).

#### Gearbox in special mounting position

The gearbox is intended for a specific rotation angle and is delivered with the correct quantity of oil for this purpose.

It is not possible to check the oil level. You will find information regarding oil quantity and type of oil on the rating plate.

## 11.3.21 Mounting the oil expansion tank

An oil expansion unit can be used depending on the power, input speed, mounting position and transmission ratio. The oil expansion unit is used to equalize changes in the oil volume caused by temperature fluctuations in operation.

Before commissioning the gearbox, replace the screw plug with the oil expansion unit.

#### Oil expansion unit frame size 39 - 89

The unit is supplied as a mounting kit, and can be attached to the geared motor vertically or at an angle.

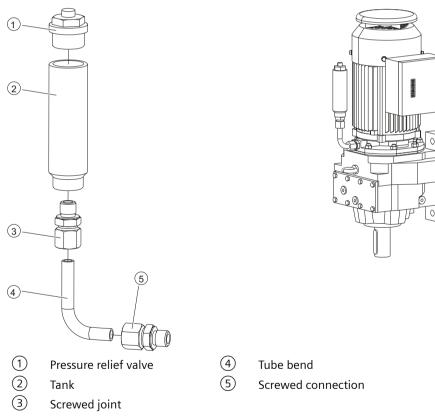



Figure 11-30 Mounting an oil expansion unit frame size 39 - 89

#### Procedure

- 1. Assemble the mounting kit (1) (5).
- 2. Screw on the tank with the screwed connection (5) at the uppermost hole of the gearbox housing or of the motor bearing shield.
- 3. Align the oil expansion unit so that it is vertical.

## Oil expansion unit frame size 109

### NOTICE

#### Leaky hose

The hose of the oil expansion unit is subject to a natural aging process.

Check the hose for tears or leaks.

Never commission a leaky hose. Replace the hose if necessary.

The hose of the oil expansion unit is not suitable for ambient temperatures below -25 °C.

If the ambient temperatures differ, contact Technical Support.

The unit is supplied as a mounting kit.

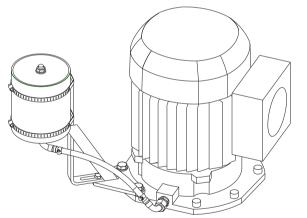



Figure 11-31 Example of an oil expansion unit frame size 109

## 11.3.22 Faults, causes and remedies

#### Note

Faults and malfunctions that occur during the warranty period and requiring repair work on the gearbox must be remedied only by Technical Support. If faults occur without a clearly identifiable cause, Siemens AG recommends the services of the Technical Support even after the warranty period has elapsed.

If you need the help from the Technical Support, please have the following information ready:

- Rating plate data
- Nature and extent of the fault
- Suspected cause

| Faults                                | Causes                                                               | Remedy                                                                                                                   |
|---------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Unusual noise on                      | Oil level too low.                                                   | Check the oil level (Page 517).                                                                                          |
| the gearbox.                          | Foreign bodies in the oil (irregular noise).                         | Checking the oil quality (Page 521).<br>Cleaning the geared motor (Page 439).<br>General safety instructions (Page 517). |
|                                       | Excessive bearing play and / or bearing defective.                   | Check the bearing and replace if neces-<br>sary.                                                                         |
|                                       | Defective gearing.                                                   | Check the gearing and replace if neces-<br>sary.                                                                         |
|                                       | Fastening bolts loose.                                               | Checking the tightness of fastening bolts (Page 530).                                                                    |
|                                       | Excessive external load on the drive in-<br>put and output.          | Check the load against rated data (you<br>might need to correct the belt tension,<br>for example).                       |
|                                       | Transport damage.                                                    | Check the gearbox for damage in transit.                                                                                 |
|                                       | Damage due to blockage during com-<br>missioning.                    | Call Technical Support.                                                                                                  |
| Unusual noise<br>from the drive unit. | Drive unit bearing not lubricated (motor frame size 160 and higher). | Regrease the bearing (Page 525).                                                                                         |
|                                       | Excessive bearing play and / or bearing defective.                   | Check the bearing and replace if neces-<br>sary.                                                                         |
|                                       | Fastening bolts loose.                                               | Checking the tightness of fastening bolts (Page 530).                                                                    |
| Unusual motor<br>noise.               | Excessive bearing play and / or bearing defective.                   | Check the bearing and replace if neces-<br>sary.                                                                         |
|                                       | Motor brake is rubbing.                                              | Check air gap and adjust if necessary.                                                                                   |
|                                       | Converter parameterization.                                          | Correct the parameterization.                                                                                            |

Table 11-43 Faults, causes and remedies

| Faults                                                          | Causes                                                                                         | Remedy                                                                                               |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Oil escapes.                                                    | Incorrect oil level for the mounting posi-<br>tion being used.                                 | Check the mounting position<br>(Page 531) and the oil level<br>(Page 517).                           |
|                                                                 | Gearbox leaks.                                                                                 | Checking the gearbox for leaks (Page 529).                                                           |
|                                                                 | Overpressure due to lack of venting.                                                           | Mount the venting as appropriate for the mounting position (Page 531).                               |
|                                                                 | Overpressure due to soiled venting.                                                            | Clean the venting (Page 529).                                                                        |
|                                                                 | Shaft sealing rings defective.                                                                 | Replace the shaft sealing rings.                                                                     |
|                                                                 | Cover / flange bolts loose.                                                                    | Checking the tightness of fastening<br>bolts (Page 530). Continue to monitor<br>the gearbox.         |
|                                                                 | Surface sealing defective (e.g. on cover, flange).                                             | Reseal.                                                                                              |
|                                                                 | Damage in transit (e.g. hairline cracks).                                                      | Check the gearbox for damage in transit                                                              |
| Oil leak at the gear-<br>box vent                               | Incorrect oil level for the mounting position used and <i>l</i> or incorrect venting position. | Check the venting position, the mount-<br>ing position (Page 531) and the oil lev-<br>el (Page 517). |
|                                                                 | Frequent cold starts during which the oil foams up.                                            | Call Technical Support.                                                                              |
| Gearbox over-<br>heats.                                         | Motor fan cover and / or gearbox very dirty.                                                   | Clean the fan cover and surface of the geared motor (Page 439).                                      |
|                                                                 | Incorrect oil level for the mounting posi-<br>tion being used.                                 | Check the mounting position<br>(Page 531) and the oil level<br>(Page 517).                           |
|                                                                 | Incorrect oil being used (e.g. incorrect viscosity).                                           | Checking the oil quality (Page 521).                                                                 |
|                                                                 | Oil is too old.                                                                                | Check the date of last oil change. If re-<br>quired, change the oil (Page 517).                      |
|                                                                 | Excessive bearing play and / or bearing defective.                                             | Check the bearing and replace if necessary.                                                          |
|                                                                 | Coolant temperature outside the per-<br>missible range.                                        | Adjust the cooling air to the appropriate temperature.                                               |
| Output shaft does<br>not turn when the<br>motor is running.     | Force flow interrupted by breakage in gearbox.                                                 | Call Technical Support.                                                                              |
| Geared motor only<br>starts with difficul-<br>ty or not at all. | Incorrect oil level for the mounting posi-<br>tion being used.                                 | Check the mounting position<br>(Page 531) and the oil level<br>(Page 517).                           |
|                                                                 | Incorrect oil being used (e.g. incorrect viscosity).                                           | Checking the oil quality (Page 521).                                                                 |
|                                                                 | Excessive external load on the drive in-<br>put and output.                                    | Check the load against rated data (you might need to correct the belt tension, for example).         |
|                                                                 | Motor brake is not released.                                                                   | Check circuit / connection of brake.<br>Check brake for wear and readjust if nec<br>essary.          |

| Faults                                 | Causes                                           | Remedy                                                |
|----------------------------------------|--------------------------------------------------|-------------------------------------------------------|
| Excessive play at drive input and out- | Flexible elements worn (e.g. on cou-<br>plings). | Replace flexible elements.                            |
| put.                                   | Positive connection disrupted by over-<br>load.  | Call Technical Support.                               |
| Speed and torque drop.                 | Belt tension too low (for belt drive).           | Check the belt tension and replace belt if necessary. |

## 11.3.23 General notes about maintenance work

## 

#### Unintentional starting of the drive unit

Secure the drive unit to prevent it from being started up unintentionally.

Attach a warning notice to the start switch.

#### NOTICE

#### Improper maintenance

Only authorized qualified personnel may perform the maintenance and servicing. Only original parts supplied by Siemens AG may be installed.

Only qualified personnel may perform the inspection, maintenance and service work. Carefully follow the General information gearbox (Page 481).

| Remedy                                                                                 | Interval                                                                                         | Description of work                                      |
|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Monitor and check the geared<br>motor for unusual noise, vibra-<br>tions, and changes. | Daily; if possible, more frequent-<br>ly during operation.                                       | Operation (Page 439)                                     |
| Check the housing temperature.                                                         | After 3 hours, on the first day, thereafter monthly.                                             |                                                          |
| Check the oil level.                                                                   | After the first day, and then every<br>3000 operating hours, or at the<br>latest after 6 months. | Checking and changing lubri-<br>cants (Page 517)         |
| Check the oil level sensor                                                             | Regularly and after oil changes.                                                                 | Checking the oil level sensor (op-<br>tional) (Page 529) |
| Check the oil quality.                                                                 | Every 6 months.                                                                                  | Checking the oil quality<br>(Page 521)                   |
| First oil change after commission-<br>ing.                                             | After approximately 10000 oper-<br>ating hours or at the latest after<br>2 years.                | Checking and changing lubri-<br>cants (Page 517)         |
| Subsequent oil changes.                                                                | Every 2 years or 10000 operating hours <sup>1)</sup> .                                           |                                                          |

Table 11-44Maintenance measures

| Remedy                                                                                                                                               | Interval                                                          | Description of work                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|
| Visual inspection of the gear-<br>box and shaft sealing ring for<br>leaks.                                                                           | After the first day, thereafter monthly.                          | Checking the gearbox for leaks<br>(Page 529)                 |
| When required, replace the breather valve.                                                                                                           | Once a year.                                                      | Replacing the vent valve<br>(Page 529)                       |
| Clean the gearbox.                                                                                                                                   | Depending on degree of soiling, at least every 6 months.          | Cleaning the geared motor<br>(Page 439)                      |
| Carry out a complete inspection of the geared motor.                                                                                                 | Every 12 months.                                                  | Inspecting the geared motor<br>(Page 439)                    |
| Check the friction clutch and ad-<br>just if necessary.                                                                                              | After 500 hours, thereafter once a year and after every blockage. | Observe the BA 2039 Operating Instructions.                  |
| Check the coupling.                                                                                                                                  | For the first time after 3 months.                                | Please refer to the separate oper-<br>ating instructions.    |
| Check that fastening bolts on<br>gearboxes and add-on elements<br>are securely tightened. Check<br>that covers and plugs are secure-<br>ly fastened. | After 3 hours, and then every 2 years.                            | Checking the tightness of fasten-<br>ing bolts (Page 530)    |
| Change the roller bearing grease.                                                                                                                    | When the oil is changed.                                          | Change the roller bearing grease<br>(Page 525)               |
| Replace the bearing.                                                                                                                                 | -                                                                 | Replace bearings (Page 528)                                  |
| Check the rubber buffer of the torque arms.                                                                                                          | Every 6 months.                                                   | Torque arms with slip-on gear-<br>boxes (Page 509)           |
| Check the hose of the oil expan-<br>sion tank.                                                                                                       | Check regularly; renew every 4 years at the latest.               | Replacing the hose of the oil ex-<br>pansion unit (Page 530) |

<sup>1)</sup> When using synthetic oils, the intervals can be doubled. The data specified is valid for an oil temperature of +80 °C. See the figure titled "Guide values for oil change intervals" for the intervals for other temperatures.

## 11.3.24 Checking and changing lubricants

#### 11.3.24.1 General safety instructions

## MARNING

## Danger of scalding from escaping hot oil

Before starting any work wait until the oil has cooled down to below +30 °C.

## M WARNING

#### Risk of slipping on oil

Remove any oil spillage immediately with an oil-binding agent in compliance with environmental requirements.

## NOTICE

#### Damage to the gearbox caused by incorrect oil quantities

The oil quantity and the position of the sealing elements are determined by the mounting position.

After removing the oil level screw, the oil level may not be below the specified fill level.

#### NOTICE

#### Damage to the gearbox due to open oil holes

Dirt and damaging atmosphere can penetrate through open oil holes.

Close the gearbox immediately after checking the oil level or changing the oil.

#### Note

### **Oil specifications**

Refer to the rating plate for the type of oil, oil viscosity and quantity of oil required.

For oil compatibility, see Recommended lubricants (Page 527).

#### Note

#### Gearbox sizes 19 and 29

Gearbox sizes 19 and 29 are lubricated for life. There is no opening to check the oil level. An oil change is not required.

In mounting positions M2 and M4 the gearboxes are equipped with a breather valve.

C29 has a breather valve in all mounting positions.

## 11.3.24.2 Checking the oil level

#### NOTICE

#### The gearbox oil volume changes depending on the temperature

If the temperature rises, the volume increases. Where temperature differences and filling quantities are significant, the volume difference can amount to several liters.

The oil level must therefore be checked while still slightly warm, approximately 30 minutes after switching off the drive unit.

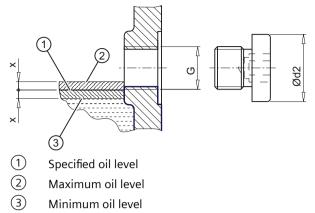



Figure 11-32 Oil level in the gearbox housing

Table 11-45 Minimum and maximum fill levels x

| Oil level hole | Ød2 | Fill level x | Tightening torque |
|----------------|-----|--------------|-------------------|
|                | mm  | mm           | Nm                |
| G 1/8"         | 14  | 2.5          | 10                |
| G 1/4"         | 18  | 3            | 10                |
| G 3/8"         | 22  | 4            | 25                |
| G 3/4"         | 32  | 7            | 50                |

### Procedure

- 1. Switch off the power supply to the drive unit.
- 2. Unscrew the oil level screw, see Mounting positions (Page 531). Oil escapes if the maximum fill level is above the plug hole.
- 3. Check the oil level. Observe the fill level x.
- 4. Top up the oil level if necessary and check it again.
- 5. Check the state of the sealing ring on the sealing element. If the sealing ring is damaged, replace the sealing element with a new one.
- 6. After checking, seal the gearbox immediately using the sealing element.

## 11.3.24.3 Checking the oil level using the oil sight glass (optional)

If there is an oil sight glass to check the oil level (1), the oil must be visible in the center of the sight glass when the oil is cool. When the oil is hot, the oil level (1) is above the center of the sight glass. The oil level (1) of cold oil is below the center of the sight glass.



Figure 11-33 Oil level in the oil sight glass Top up the oil level ① if necessary, and check it again.

## 11.3.24.4 Checking the oil level using the oil dipstick (optional)

In the M4 mounting position for ZF/EF helical gearboxes, the oil level can be checked with an oil dipstick.



Figure 11-34 Checking the oil level using the oil dipstick

To check the oil level, push the oil dipstick 1 into the hole but do not screw it in.

The oil level must be between the lower 2 and upper 3 marks on the oil dipstick 1.

After checking, screw the oil dipstick 1 in again hand-tight. The oil dipstick 1 can remain screwed in during operation.

Rectify the oil level if necessary and check it again.

## 11.3.24.5 Checking the oil quality

Visible signs show effects on the oil. Fresh oil is clear to the eye, and has a typical smell and a specific product color. Clouding or a flocculent appearance indicates water and / or contamination. A dark or black color indicates residue, serious thermal decomposition or contamination.

Observe the symbols in the diagrams of the Mounting positions (Page 531):



Venting

Oil level

## Procedure

- 1. Allow the geared motor to run for a short time. Wear and contaminant particles are visible in the oil shortly after shutting down.
- 2. Switch off the power supply to the drive unit.
- 3. Unscrew the sealing element at one of the points marked with the symbols listed above.
- 4. Remove some oil, using a suction pump and a flexible hose, for example.
- 5. Check the state of the sealing ring on the sealing element. When required, replace the sealing ring.
- 6. Seal the gearbox with the sealing element.
- 7. Check the oil for abnormalities. Change the oil immediately if you determine any abnormalities, see General safety notes for changing the oil (Page 522).

## 11.3.24.6 General safety notes for changing the oil

## NOTICE

#### Impermissible mixing of oils leads to damage

Impermissible mixing of oils leads to:

- Darkening
- Sediment
- Foam formation
- Change of the viscosity or reduced corrosion protection
- Wear protection.

When changing oil of the same type, the residual volume of oil in the gearbox should be kept as low as possible. Generally speaking, a small residual volume will cause no particular problems.

Gear oils of different types and by different manufacturers must not be mixed. Have the manufacturer confirm that the new oil is compatible with the remaining volume of used oil.

If very different types of oil or oils with very different additives are changed, always flush out the gearbox with the new oil. When changing from mineral oil to polyglycol oil (PG) or vice versa, it is vital to flush the gearbox twice. All traces of old oil must be completely removed from the gearbox.

## NOTICE

Contaminations of the oil impair the lubricity

Do not mix the gearbox oil with other substances.

Do not flush with paraffin or other solvents, as traces of these substances will always remain inside the gearbox.

#### Note

The oil must be warm because insufficient viscosity caused by oil that is too cold impairs correct emptying.

If necessary, run the gearbox for 15 to 30 minutes to become warm.

## 11.3.24.7 Draining the oil

Observe the symbols in the diagrams of the Mounting positions (Page 531):



Venting



Oil level



Oil drain

## Procedure

- 1. Switch off the power supply to the drive unit.
- 2. Unscrew the vent plug.
- 3. Place a suitable and sufficiently large receptacle underneath the oil drain plug.
- 4. Remove the oil drain plug. Drain all the oil into the receptacle.
- 5. Check the state of the sealing ring on the sealing element. If the sealing ring is damaged, replace the sealing element with a new one.
- 6. After draining the oil, seal the gearbox immediately using the sealing element.

## 11.3.24.8 Flushing the gearbox when changing between incompatible oils

## MARNING

### Impermissible mixing of oils leads to damage

Residual quantities of original oil can impair the specific properties of the new oil.

A flushing process is required with biodegradable and physiologically safe oils.

The residual corrosion protection oil must amount to no more than 1% of the operating oil volume.

#### Note

Polyglycol oil has a higher density than mineral oil. Therefore, it sinks down towards the oil drain and the mineral oil floats on top.

This makes the required complete draining of mineral oil from the gearbox extremely difficult.

#### Note

After the second flush, we recommend that an appropriate analysis institute checks the quality of the flushed fluid.

Observe the symbols in the diagrams of the Mounting positions (Page 531):



Venting



Oil drain

## Procedure

- 1. After the oil has been drained, wipe the gearbox clean of any remaining mineral oil using a cloth.
- 2. Unscrew the vent plug.

- 3. Fill the gearbox with a flushing oil, using a filter (filter mesh max. 25 µm). For the flushing oil, use either the new oil or one that is compatible with the new oil and is less expensive.
- 4. Operate the gearbox for 15 to 30 minutes under a low load.
- 5. Place a suitable and sufficiently large receptacle underneath the oil drain plug.
- 6. Remove the oil drain plug. Drain all the oil into the receptacle.
- 7. After flushing, immediately seal the gearbox using the sealing element.
- 8. Repeat this step for the second flushing.

#### 11.3.24.9 Filling in oil

## NOTICE

#### Mixing of different oils impairs the lubricity

When adding oil, use the same oil type and viscosity. If changing mutually incompatible oils, see Flushing the gearbox (Page 523).

Observe the symbols in the diagrams of the Mounting positions (Page 531):



Venting

## Procedure

- 1. Unscrew the vent plug.
- 2. Fill the gearbox with fresh oil. Use a filler filter with mesh of max. 25  $\mu$ m.
- 3. Check the oil level.
- 4. Top up the oil level if necessary and check it again.
- 5. Check the state of the sealing ring on the sealing element. If the sealing ring is damaged, replace the sealing element with a new one.
- 6. After filling with oil, seal the gearbox immediately using the sealing element.

### 11.3.24.10 Topping up with oil

If the mounting position of the gearbox is changed or oil lost because of leakage, check the oil level. If you notice oil escaping, locate the leak, and seal the affected area. Top up and check the oil level.

At the time of going to print, the following types of oil are being used when the gearbox is filled for the first time:

- CLP ISO VG220: Fuchs Renolin CLP220
- CLP ISO PG VG220: Fuchs Renolin PG220
- CLP ISO PG VG460: Fuchs Renolin PG460
- CLP ISO PAO VG68: Fuchs Renolin Unisyn XT68
- CLP ISO PAO VG220: Fuchs Renolin Unisyn XT220
- CLP ISO PAO VG460: Fuchs Renolin Unisyn CLP460
- CLP ISO E VG220: Fuchs Plantogear S220
- CLP ISO H1 VG100: Klüber Klübersynth UH1 6 100
- CLP ISO H1 VG460: Castrol Optileb GT 1800/460
- If, following agreement, the gearbox is filled at the factory with special lubricant for the special applications referred to above, the lubricant must be shown on the rating plate.

### 11.3.24.11 Change the roller bearing grease

The roller bearings are lubricated in the factory with the greases listed in the table.

Renew the grease quantify for grease-lubricated bearings with each oil change.

Clean the bearing before filling it with fresh lubricant.

In the case of bearings on the output shaft or intermediate shafts, the grease quantity must fill 2/3, and in the case of bearings on the input side, 1/3 of the space between the rolling elements.

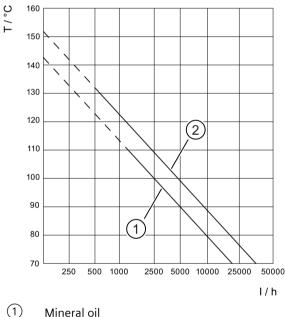
| Fields of application                                                        | Ambient temperature | Manufacturer    | Туре                                                |  |
|------------------------------------------------------------------------------|---------------------|-----------------|-----------------------------------------------------|--|
| Standard                                                                     | -40 °C to +80 °C    | Klüber<br>Fuchs | Petamo GHY 133 N<br>Renolit CX-Tom 15 <sup>1)</sup> |  |
| Foodstuff-compatible for the food industry                                   | -30 °C to +60 °C    | Castrol         | Optileb GR UF 1 NSF H1                              |  |
| Biologically degradable, for agriculture, forestry and wa-<br>ter industries | -35 °C to +60 °C    | Fuchs           | Plantogel 2 S                                       |  |
| <sup>1)</sup> Rolling-bearing grease based on a semi-synthetic base oil.     |                     |                 |                                                     |  |

Table 11-46 Roller-bearing and shaft-sealing-ring grease

## 11.3.24.12 Service life of the lubricants

#### Note

In case of ambient conditions deviating from normal conditions, e.g. high ambient temperatures, high relative humidity, aggressive ambient media, the intervals between changes should be shorter. In such cases, contact Technical Support for assistance in determining the individual lubricant change interval.


#### Note

Oil sump temperatures above +80 °C can reduce service life. A temperature increase by 10 K halves the service life by the amount as shown in the figure titled "Guide values for oil change intervals".

For a +80  $^{\circ}$ C oil sump temperature, the following service life can be expected when observing the properties specified by Siemens AG:

Table 11-47 Service life of the oils

| Type of oil                                       | Service life                      |
|---------------------------------------------------|-----------------------------------|
| Mineral oil                                       | 10 000 operating hours or 2 years |
| Biodegradable oil                                 |                                   |
| Physiologically safe oil according to USDA-H1/-H2 |                                   |
| Synthetic oil                                     | 20 000 operating hours or 4 years |



Mineral oil

2 Synthetic oil

T Oil bath steady-state temperature in °C

I Oil change interval in operating hours in h

Figure 11-35 Guide values for oil change intervals

#### Grease service life of roller bearing greases

Roller bearings and the clearance in front are filled with sufficient grease.

Under approved operating conditions and ambient temperatures, no regreasing is required.

We recommend that the grease in the bearings is also renewed when the oil or shaft sealing rings are replaced.

## 11.3.24.13 Recommended lubricants

The released and recommended lubricants are listed in the table NT 7300 (<u>https://support.industry.siemens.com/cs/ww/en/view/109753864</u>).

## \Lambda DANGER

#### Commonly used lubricants only have conditional approval

Commonly used lubricants are not or only conditionally approved for use in the foodstuff or pharmaceutical industry.

Use only lubricants with USDA (United States Department of Agriculture) H1/H2 approval for deployment in the foodstuff or pharmaceutical industry.

## NOTICE

#### Incorrect operating temperatures impair the lubricity of the gearbox oil

Operating temperatures outside the permitted range impair the lubrication capabilities of the gearbox oil.

Be sure to observe the permissible oil sump temperatures listed in the lubricant table.

The oil used must be approved for use in the ambient temperature range given on the rating plate.

When changing the oil, please observe the operating temperature range of the new oil as specified by the oil manufacturer.

#### Note

As standard, the lubricants and shaft seals are matched with each other corresponding to the prevailing operating conditions.

Contact Technical Support for:

- Change in the operating conditions
- Change in oil grade
- Deployment of new shaft seals.

#### Note

Commonly used lubricants are not at all or only conditionally biodegradable. If biologically degradable lubricants are required, use only gearbox lubricants with the appropriate classification listed in the NT 7300 table.

#### Note

These recommendations are not a guarantee of the lubricant quality provided by your supplier. All lubricant manufacturers are responsible for the quality of their own products.

The oil viscosity (ISO VG class) is decisive for selecting the right oil. The viscosity is specified on the rating plate of the gearbox. The viscosity class indicated applies for the contractually agreed operating conditions.

In the case of different operating conditions, contact Technical Support.

If, following agreement, the gearbox is filled at the factory with special lubricant for the applications listed above, the lubricant is shown on the rating plate.

The oil quality must meet the gearbox lubricant requirements specified in the NT 7300 table. The Siemens warranty is otherwise null and void. We recommend the use of one of these gearbox lubricants. These gearbox oils are subject to constant testing and meet the specified requirements. It is possible that the recommended oils are deleted or replaced by oils that have been further developed at a later point in time. We recommend that you regularly check as to whether the selected lubricating oil is still recommended by Siemens. Otherwise change the product.

| Table 11-48 Lu | ubricant table |
|----------------|----------------|
|----------------|----------------|

| Operating range                         | Oil grade<br>designation according to<br>DIN 51502 | Permissible oil<br>sump tempera-<br>ture range dur-<br>ing operation<br>°C | Ambient temperature<br>℃ |          |        |
|-----------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------|--------------------------|----------|--------|
| Helical gearbox E / Z /                 | D, parallel shaft gearbox F and b                  | evel gearbox K                                                             | -15 +40°                 | -30 +40° | -20+55 |
| Standard                                | CLP ISO VG220                                      | -15 +80°                                                                   | 1                        | -        | -      |
|                                         | CLP ISO PAO VG220                                  | -30 +100°                                                                  | 1                        | 1        | ✓      |
|                                         | CLP ISO PAO VG68                                   | -40 +60°                                                                   | -                        | 1        | -      |
|                                         | CLP ISO PG VG460                                   | -25 +110°                                                                  | 1                        | -        | 1      |
|                                         | CLP ISO PG VG220                                   | -25 +110°                                                                  | 1                        | -        | ✓      |
| Food sector (USDA)                      | CLP ISO H1 VG460                                   | -25 +100°                                                                  | 1                        | -        | ✓      |
| NSF-H1                                  | CLP ISO H1 VG100                                   | -30 +90°                                                                   | 1                        | 1        | ✓      |
| Biodegradable oil                       | CLP ISO E VG220                                    | -20 +100°                                                                  | 1                        | -        | ✓      |
| Helical worm gearbox C, bevel gearbox B |                                                    | -20 +40°                                                                   | -30 +40°                 | -20+55   |        |
| Standard                                | CLP ISO PG VG220                                   | -25 +110°                                                                  | 1                        | -        | ✓      |
|                                         | CLP ISO PAO VG460                                  | -25 +110°                                                                  | 1                        | -        | ✓      |
|                                         | CLP ISO PAO VG220                                  | -30 +100°                                                                  | 1                        | 1        | 1      |
|                                         | CLP ISO PAO VG68                                   | -40 +60°                                                                   | -                        | 1        | -      |
|                                         | CLP ISO PG VG460                                   | -25 +110°                                                                  | ✓                        | -        | ✓      |
| Food sector (USDA)                      | CLP ISO H1 VG460                                   | -25 +100°                                                                  | 1                        | -        | ✓      |
| NSF-H1                                  | CLP ISO H1 VG100                                   | -30 +90°                                                                   | 1                        | -        | ✓      |

CLP = mineral oil

CLP PG = polyglycol oil

E = ester oil, organic oil (bio oil / risk of water pollution, class WGK1)

PAO = poly-alpha-olefin oil

CLP H1 = physiologically safe oil (USDA-H1 approval)

## 11.3.25 Replace bearings

The bearing service life is finite, greatly depends on the operating conditions and therefore cannot be calculated reliably. In the operating conditions specified by the operator, bearing life can be calculated. Changes in vibration and noise pattern are an indication that an immediate bearing replacement is necessary.

## 11.3.26 Checking the gearbox for leaks

#### Note

Due to the inherent principle of operation, oil mist can escape from a breather valve or labyrinth seal.

Oil or grease escaping in small quantities from the shaft sealing ring should be regarded as normal during the running-in phase of 24 hours operating time.

If the quantities escaping are significant or leaking continues after the running-in phase, the shaft sealing ring must be replaced to prevent consequential damage.

| Status                                             | Description                                                                                           | Measures                                                                                                 | Notes                                                                                                                                                                                                                |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Film of moisture<br>on the shaft seal-<br>ing ring | Film of moisture as a re-<br>sult of the inherent prin-<br>ciple of operation (appa-<br>rent leakage) | Remove using a clean cloth and continue to observe.                                                      | This does not represent a fault; frequently, in the course of operation, the seal-ing ring dries off.                                                                                                                |
| Leakage at the<br>shaft sealing ring               | Identifiable small trickle,<br>formation of drops, also<br>after the running-in<br>phase              | Replace the sealing ring,<br>determine the possible<br>cause of the sealing ring<br>failure and rectify. | During the run-in period, the<br>shaft sealing ring beds into<br>the shaft. A visible track can<br>be seen on the shaft. Opti-<br>mum preconditions for a per-<br>fect seal are obtained after<br>the run-in period. |

Table 11-49 Description and measures

## 11.3.27 Replacing the vent valve

To ensure correct functioning, renew the breather valve yearly.

When replacing, prevent dirt and damaging atmospheres from entering the gearbox.

If too much oil is contained in the gearbox, oil will escape from the breather valve. Correct the oil quantity and replace the breather valve.

## 11.3.28 Checking the oil level sensor (optional)

The oil level sensor indicates the oil level only when the gearbox is shut down.

Lower the oil level and fill it up again until the oil level sensor gives a switching signal.

Please refer to the separate operating instructions for the oil level sensor.

## 11.3.29 Checking the tightness of fastening bolts

#### Note

Replace damaged headless bolts with new bolts of the same type and strength class.

Switch off the power supply to the drive unit. Check all fastening bolts for tightness using a torque wrench.

The general tolerance for the tightening torque in Nm is 10 %. The friction coefficient is 0.14 µ.

| Thread size | Tightening torque for strength class |            |       |  |
|-------------|--------------------------------------|------------|-------|--|
|             | 8.8<br>Nm                            | 10.9<br>Nm | 12.9  |  |
|             |                                      |            | Nm    |  |
| M4          | 3                                    | 4          | 5     |  |
| M5          | 6                                    | 9          | 10    |  |
| M6          | 10                                   | 15         | 18    |  |
| M8          | 25                                   | 35         | 41    |  |
| M10         | 50                                   | 70         | 85    |  |
| M12         | 90                                   | 120        | 145   |  |
| M16         | 210                                  | 295        | 355   |  |
| M20         | 450                                  | 580        | 690   |  |
| M24         | 750                                  | 1 000      | 1200  |  |
| M30         | 1500                                 | 2 000      | 2 400 |  |
| M36         | 2 500                                | 3 600      | 4 200 |  |

Table 11-50 Tightening torques for fastening bolts

## 11.3.30 Replacing the hose of the oil expansion unit

### NOTICE

#### Hose with leaks

The hose of the oil expansion unit is subject to natural wear. The service life depends on the operating conditions.

Check the hose regularly for tears or leaks.

Renew the hose every 4 years at the latest.

# 11.3.31 Mounting positions

## 11.3.31.1 General notes on mounting positions

Only operate the gearbox in the mounting position specified on the rating plate. This ensures that the correct quantity of lubricant is provided. The symbols are shown for the standard mounting position.

### Note

### Gearbox sizes 19 and 29

Gearbox sizes 19 and 29 are lubricated for life. There is no opening to check the oil level.

In mounting positions M2 and M4 the gearboxes are equipped with a breather valve.

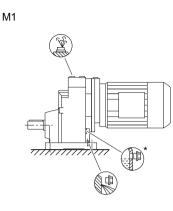
C29 has a breather valve in all mounting positions.

Description of the symbols:

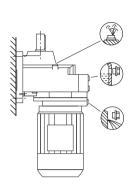


Venting

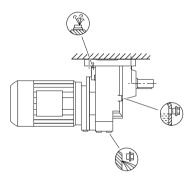


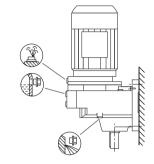



Oil drain


A, B Position of insert shaft / solid shaft

- \* On opposite side
- ① Oil level check not possible for tandem gearbox (main gearbox a)
- 2 Two-stage gearbox
- ③ Three-stage gearbox

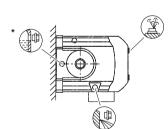

## 11.3.31.2 Single-stage helical gearboxes




M2



M4






M5

МЗ

M6



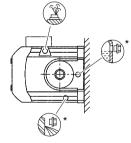
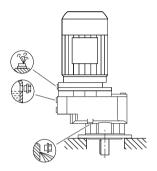




Figure 11-36 Mounting positions for helical gearbox E, foot-mounted design, sizes 39 - 89




¢

Ŷ

dì.

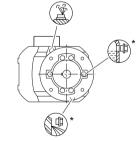
M4

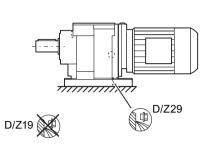


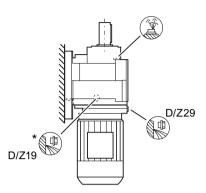
M5

М3

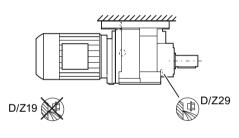


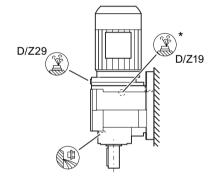




Figure 11-37 Mounting positions for helical gearbox EF/EZ, flange-mounted design, sizes 39 - 89


## 11.3.31.3 Two- and three-stage helical gearbox




M2


M4

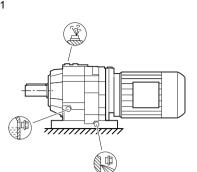


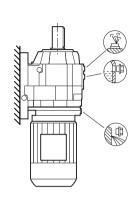


МЗ



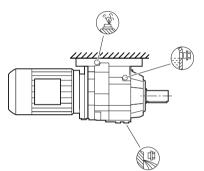


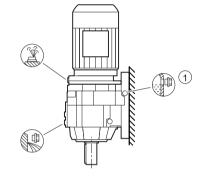

M5




M6




Figure 11-38 Mounting positions for helical gearbox D/Z foot-mounting design, sizes 19 - 29



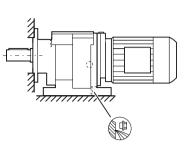


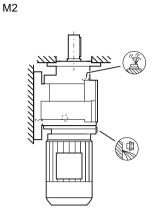

M4

M2

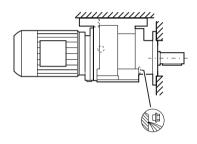


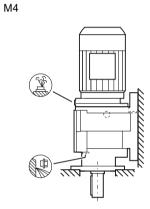






Mounting positions for helical gearbox D/Z foot-mounting design, sizes 39 - 89 Figure 11-39

M1


М3








М3





M5



M6



Figure 11-40 Mounting positions for helical gearbox DB/ZB foot / flange-mounted design, size 29

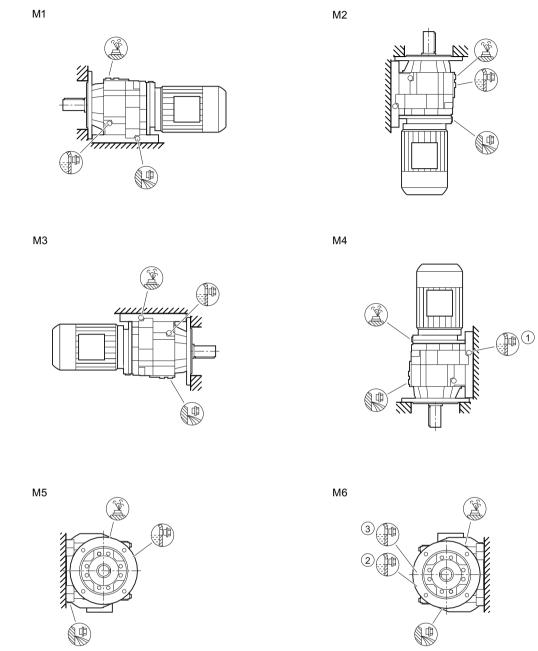
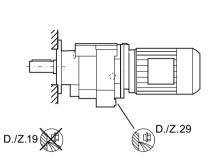
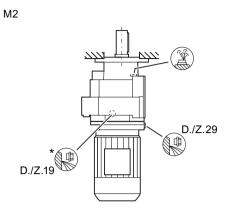
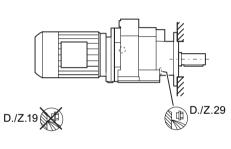
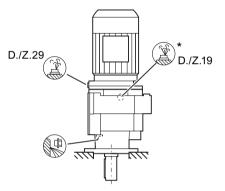





Figure 11-41 Mounting positions for helical gearbox DB/ZB foot / flange-mounted design, sizes 39 - 89



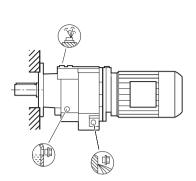


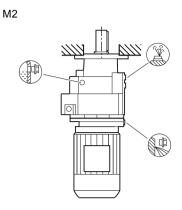

М3





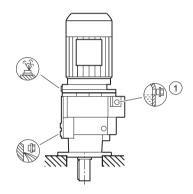



M5

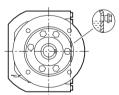








Figure 11-42 Mounting positions for helical gearbox DF/ZF flange-mounted design and DZ/ZZ with housing flange, sizes 19 - 29





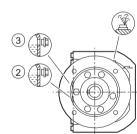
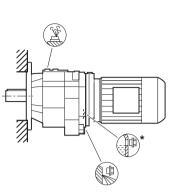

M4

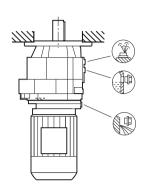
M6



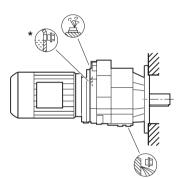
M5



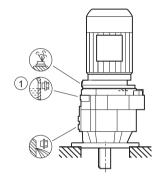



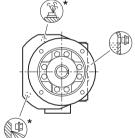


Figure 11-43 Mounting positions for helical gearbox DF/ZF flange-mounted design and DZ/ZZ with housing flange, size 39

М3






М3



M4







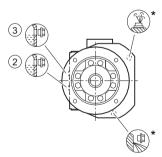
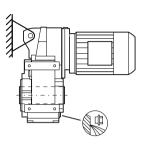
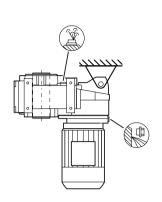
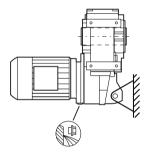





Figure 11-44 Mounting positions for helical gearbox DF/ZF flange-mounting design, sizes 49 - 89 and DZ/ZZ with housing design, sizes 49 - 89

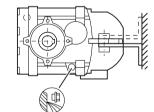
# 11.3.31.4 Parallel shaft gearbox

#### M1






M4


M2

М3



M5

M6



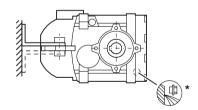
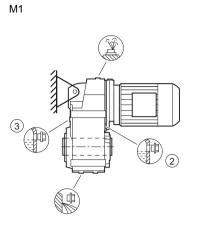
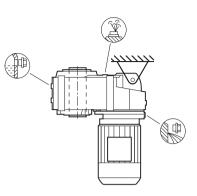
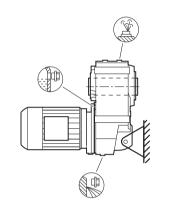





Figure 11-45 Mounting positions for parallel shaft gearbox F.AD shaft-mounted design, size 29




M2

M4



М3



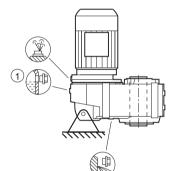
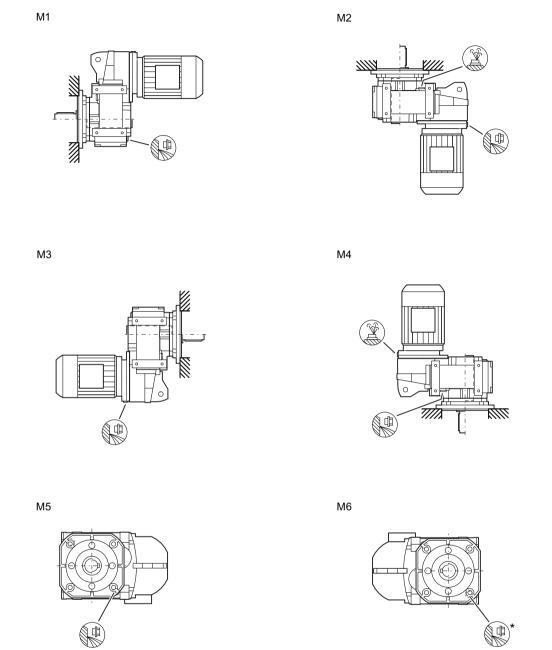
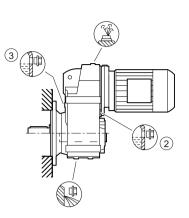
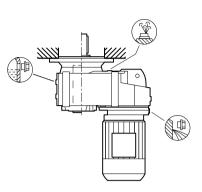


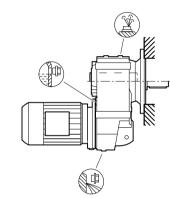


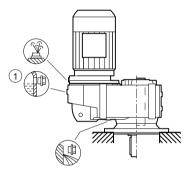

Figure 11-46 Mounting positions for parallel shaft gearbox F.AD shaft-mounted design, sizes 39 - 89

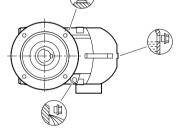





Figure 11-47 Mounting positions for parallel shaft gearbox F.F flange-mounted design and F.Z with housing flange, size 29




М3





M2



M4







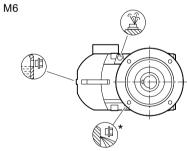



Figure 11-48 Mounting positions for parallel shaft gearbox F.F flange-mounted design and F.Z with housing flange, sizes 39 - 89

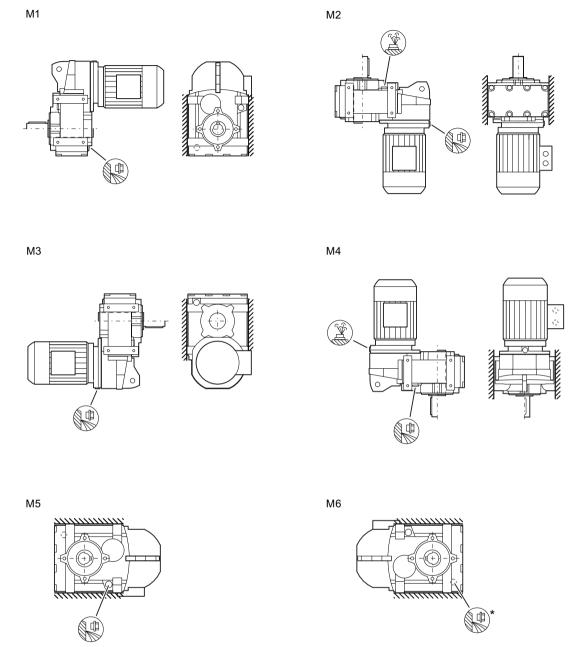
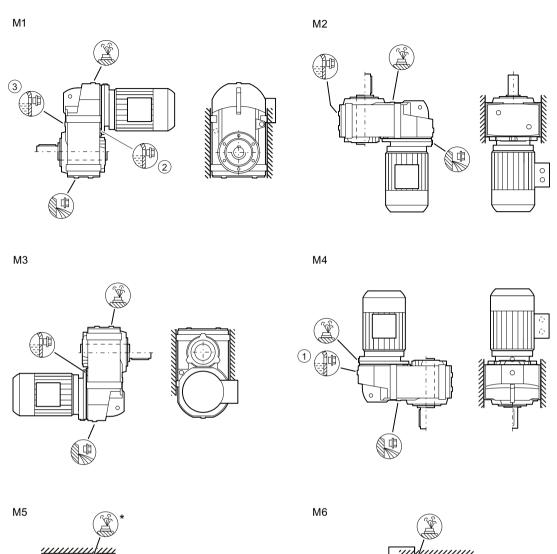
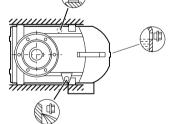





Figure 11-49 Mounting positions for parallel shaft gearbox F. foot-mounted design, size 29





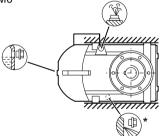
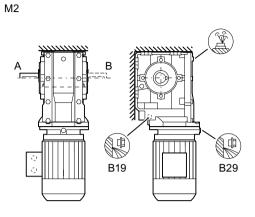
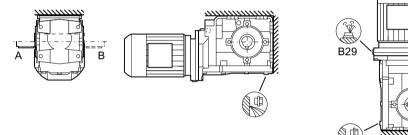
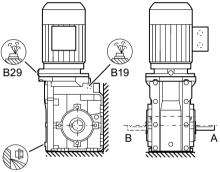




Figure 11-50 Mounting positions for parallel shaft gearbox F. foot-mounted design, sizes 39 - 89

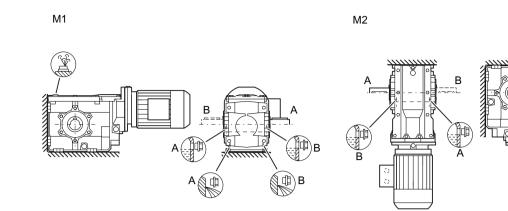

### 11.3.31.5 Bevel gearbox


M1



М3

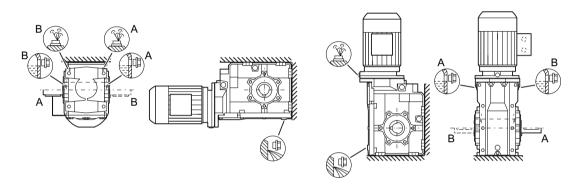
M4






M5








М3

M4

Ý



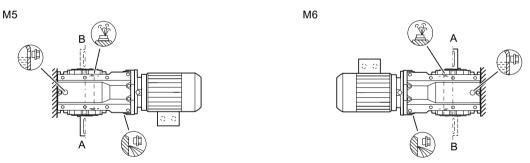
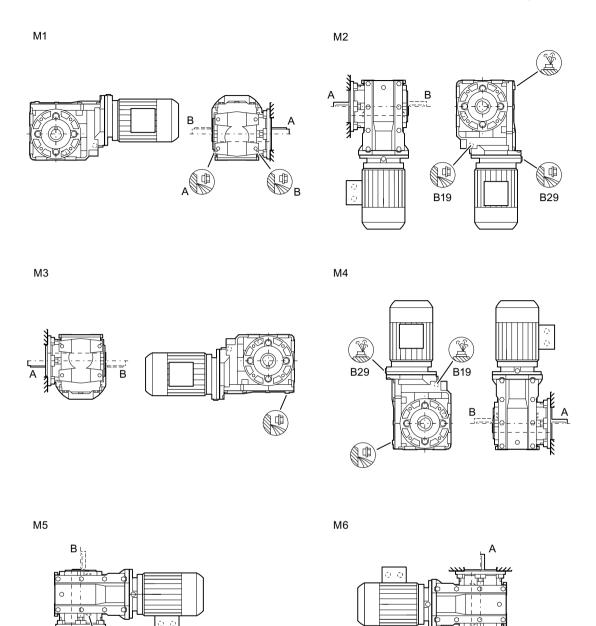
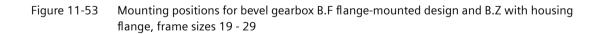
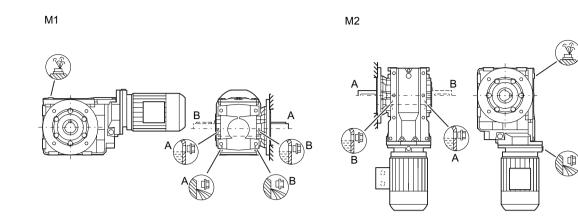
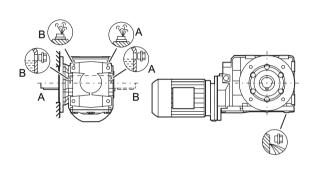




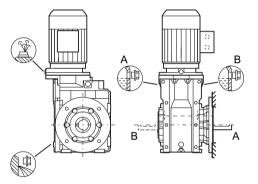

Figure 11-52 Mounting positions for bevel gearbox B. foot-mounted design, frame sizes 39 - 49



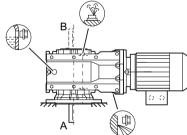



A


đĒ


В




М3

M4





M5



M6

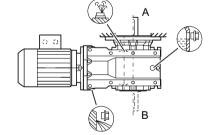



Figure 11-54 Mounting positions for bevel gearbox B.F flange-mounted design and B.Z with housing flange, frame sizes 39 - 49

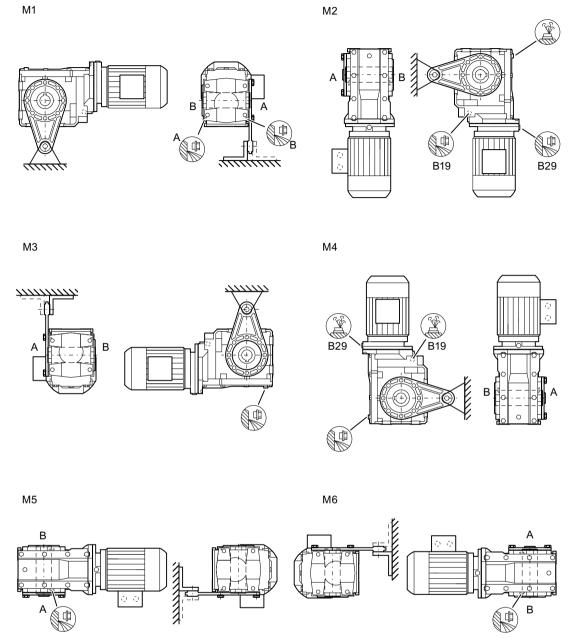
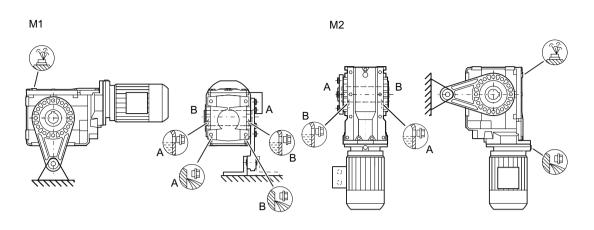
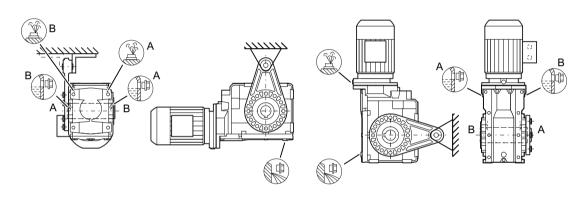





Figure 11-55 Mounting positions for bevel gearboxes BAD shaft-mounted design, frame sizes 19 - 29



М3



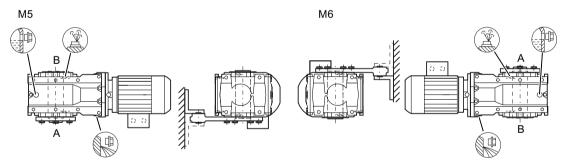
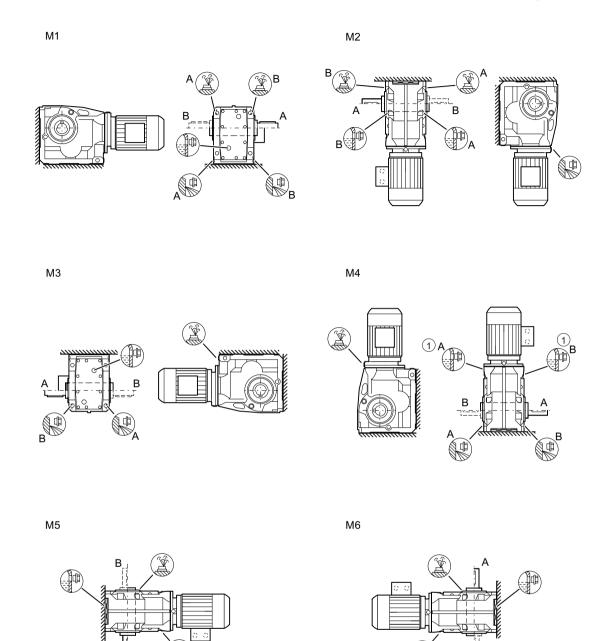
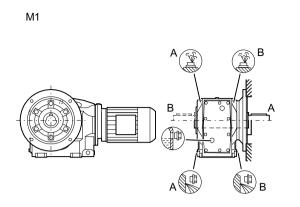
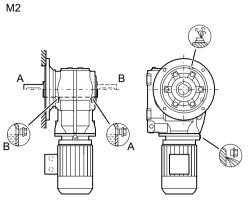


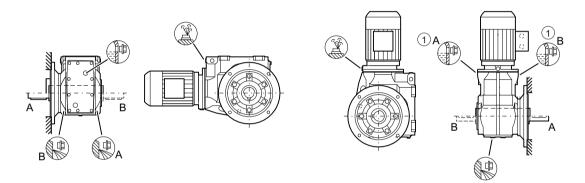

Figure 11-56 Mounting positions for bevel gearboxes BAD shaft-mounted design, frame sizes 39 - 49

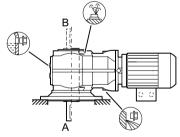


Figure 11-57 Mounting positions for bevel gearbox K. foot-mounted design, frame sizes 39 - 109

B

в


A






М3

M4



M5



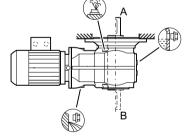
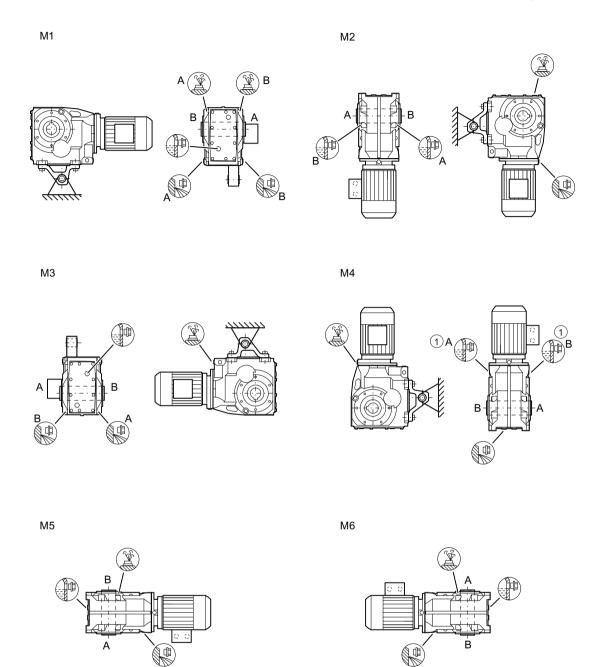
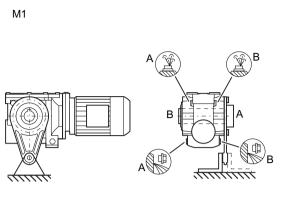
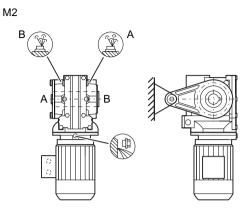
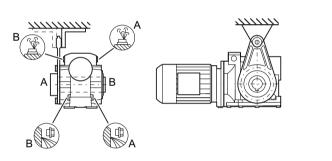
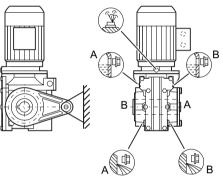



Figure 11-58 Mounting positions for bevel gearboxes K.F flange-mounted design and KAZ with housing flange, frame sizes 39 - 109

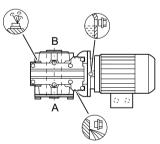




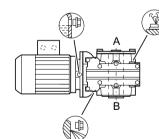


Figure 11-59 Mounting positions for bevel gearboxes KAD shaft-mounted design, frame sizes 39 - 109

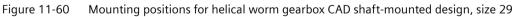

# 11.3.31.6 Helical worm gearbox






М3



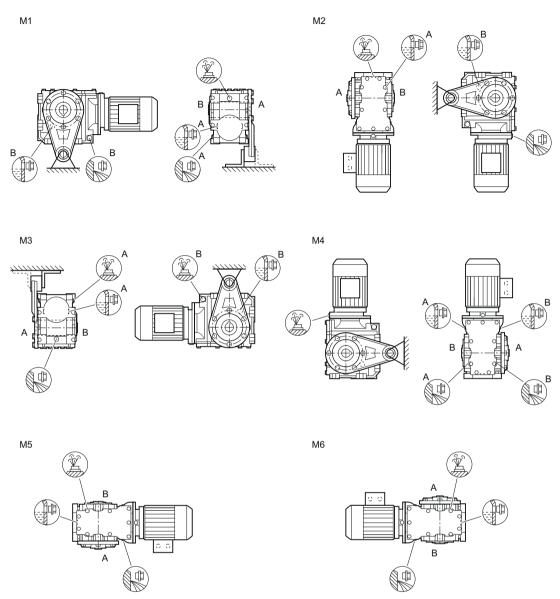
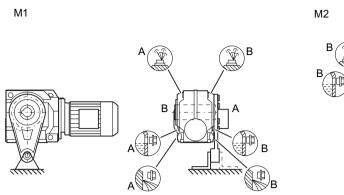
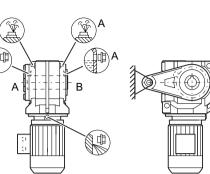

M5

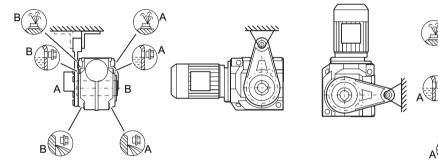
M6

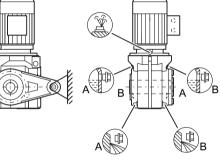




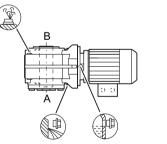




Figure 11-61 Mounting positions for helical worm gearbox CAD shaft-mounted design, size 39A







М3

M4





M5



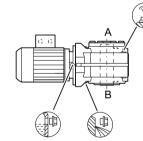
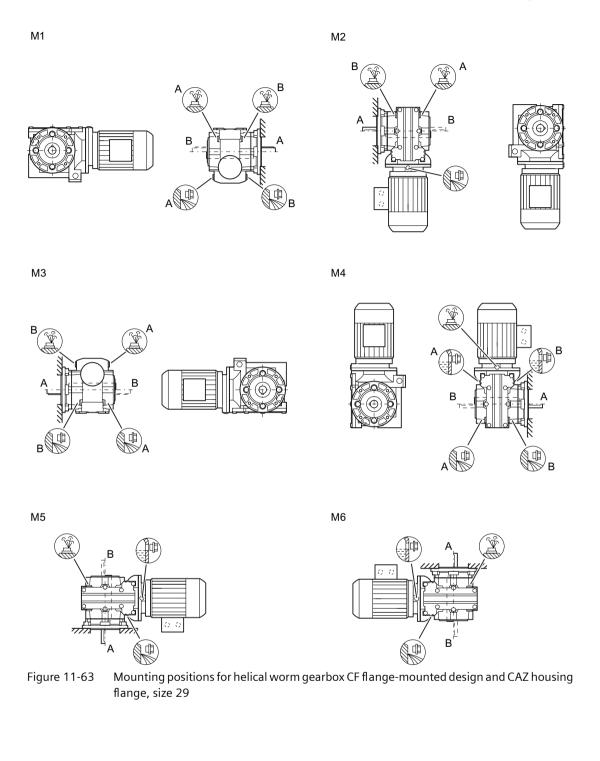
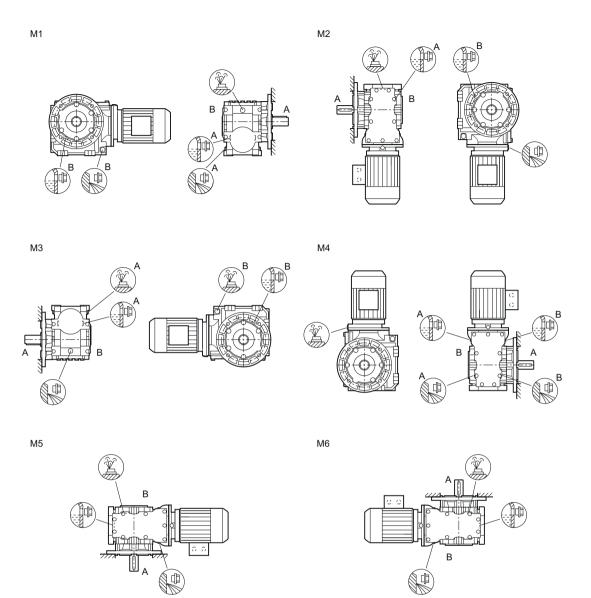
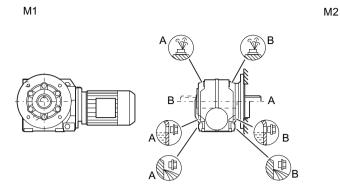
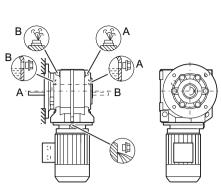
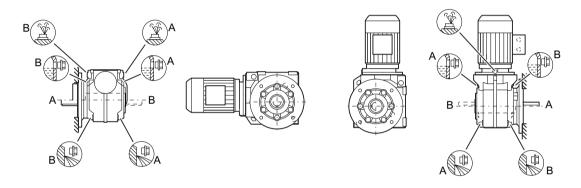



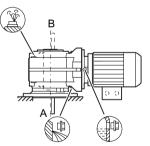

Figure 11-62 Mounting positions for helical worm gearbox CAD shaft-mounted design, sizes 39 - 89





Figure 11-64 Mounting positions for helical worm gearbox CF flange-mounted design and CAZ housing flange, size 39A






М3

M4



M5



M6

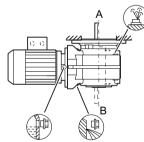
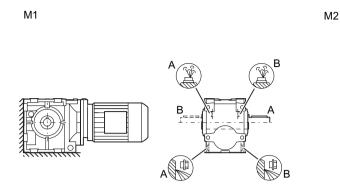
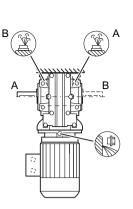
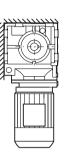
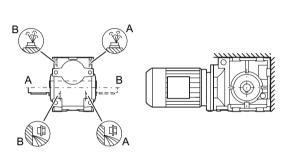
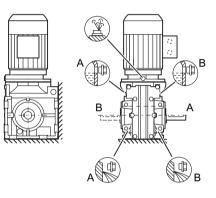
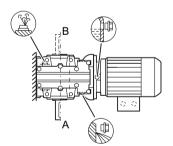






Figure 11-65 Mounting positions for helical worm gearbox CF flange-mounted design and CAZ housing flange, sizes 39 - 89







М3











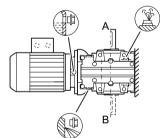



Figure 11-66 Mounting positions for helical worm gearbox C. foot-mounted design, size 29

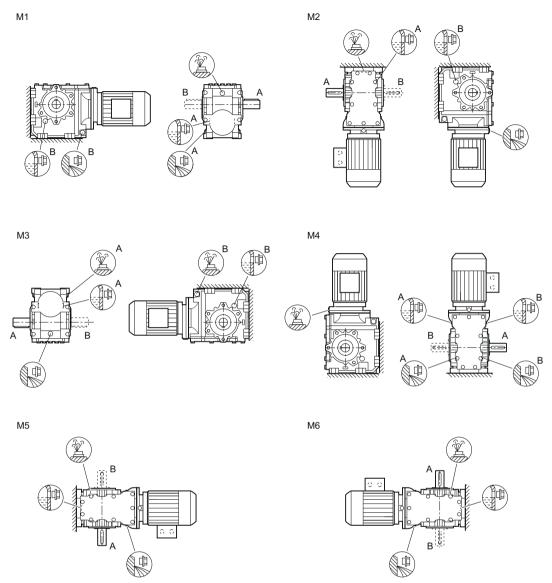



Figure 11-67 Mounting positions for helical worm gearbox C. foot-mounted design, size 39A

Δ

ſĒ

đ

# 11.3 Specific data gearbox

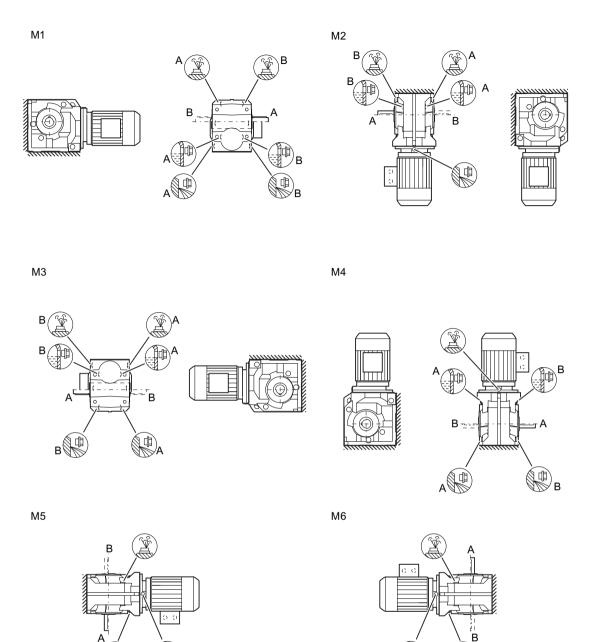



Figure 11-68 Mounting positions for helical worm gearbox C. foot-mounted design, sizes 39 - 89

巾

٢Ē

## 11.3.32 Oil quantities

### NOTICE

### Damage to the gearbox caused by incorrect oil quantities

The oil quantities listed in the tables are guidance values for changing the oil. They are used, for example, for lubricant storage and procurement.

The precise values depend on the number of stages and transmission ratio of the gearbox.

The specified oil quantities are valid for the standard mounting position.

#### Note

#### Gearbox in special mounting position

The gearbox is intended for a specific rotation angle and is delivered with the correct quantity of oil for this purpose.

You will find information regarding oil quantity and type of oil on the rating plate.

# 11.3.32.1 Helical gearbox

Table 11-51 Oil quantities in I for E, EZ, EF , sizes 39 - 89

| Туре | Mountin | Mounting position |      |     |      |      |  |  |  |
|------|---------|-------------------|------|-----|------|------|--|--|--|
|      | M1      | M2                | М3   | M4  | M5   | M6   |  |  |  |
| E.39 | 0.2     | 0.5               | 0.4  | 0.7 | 0.45 | 0.45 |  |  |  |
| E.49 | 0.4     | 1                 | 0.95 | 1.5 | 1    | 0.95 |  |  |  |
| E.69 | 0.6     | 1.9               | 1.6  | 2.5 | 1.7  | 1.7  |  |  |  |
| E.89 | 0.9     | 3.7               | 2.5  | 4   | 3    | 2.9  |  |  |  |

Table 11-52 Oil quantities in I for D/Z, DB/ZB, DF/ZF, DZ/ZZ, sizes 19 - 89

| Туре | Mounting | Mounting position |      |      |      |      |  |  |  |  |
|------|----------|-------------------|------|------|------|------|--|--|--|--|
|      | M1       | M2                | M3   | M4   | M5   | M6   |  |  |  |  |
| D.19 | 0.15     | 0.45              | 0.45 | 0.45 | 0.4  | 0.3  |  |  |  |  |
| D.29 | 0.15     | 0.65              | 0.45 | 0.5  | 0.55 | 0.4  |  |  |  |  |
| D.39 | 0.25     | 0.9               | 0.8  | 0.85 | 0.8  | 0.7  |  |  |  |  |
| D.49 | 0.55     | 1.8               | 1.8  | 1.7  | 1.7  | 1.2  |  |  |  |  |
| D.59 | 0.45     | 1.9               | 1.9  | 1.8  | 1.8  | 1.2  |  |  |  |  |
| D.69 | 0.6      | 2                 | 2.4  | 2.3  | 2.2  | 1.5  |  |  |  |  |
| D.79 | 1        | 3.5               | 3.7  | 3.6  | 3.4  | 2.3  |  |  |  |  |
| D.89 | 2        | 6.5               | 6.2  | 6    | 6    | 4.2  |  |  |  |  |
| Z.19 | 0.15     | 0.5               | 0.45 | 0.5  | 0.4  | 0.35 |  |  |  |  |
| Z.29 | 0.2      | 0.7               | 0.45 | 0.6  | 0.55 | 0.3  |  |  |  |  |
| Z.39 | 0.3      | 0.95              | 0.85 | 0.95 | 0.9  | 0.25 |  |  |  |  |

| Туре | Mounting position |     |     |     |     |      |  |  |
|------|-------------------|-----|-----|-----|-----|------|--|--|
|      | M1                | M2  | М3  | M4  | M5  | M6   |  |  |
| Z.49 | 0.55              | 1.9 | 1.9 | 1.9 | 1.8 | 0.65 |  |  |
| Z.59 | 0.65              | 2   | 1.9 | 1.9 | 1.9 | 0.6  |  |  |
| Z.69 | 0.65              | 2.1 | 2.6 | 2.6 | 2.3 | 0.85 |  |  |
| Z.79 | 1.1               | 3.8 | 3.9 | 3.9 | 3.7 | 1.4  |  |  |
| Z.89 | 2.2               | 6.9 | 6.7 | 6.7 | 6.6 | 2.4  |  |  |

# 11.3.32.2 Parallel shaft gearbox

Table 11-53 Oil quantities in I for FD/Z, FD/ZZ, FD/ZA., FD/ZAF., FD/ZAZ., FD/ZAD., sizes 29 - 89

| Туре  | Mounting | Mounting position |      |     |      |      |  |  |  |  |
|-------|----------|-------------------|------|-----|------|------|--|--|--|--|
|       | M1       | M2                | М3   | M4  | M5   | M6   |  |  |  |  |
| FD.29 | 0.6      | 0.8               | 0.35 | 0.6 | 0.45 | 0.45 |  |  |  |  |
| FD.39 | 0.95     | 1.1               | 0.7  | 1.2 | 0.8  | 0.8  |  |  |  |  |
| FD.49 | 2.1      | 2.3               | 1.5  | 2.3 | 1.5  | 1.5  |  |  |  |  |
| FD.69 | 2.2      | 2.7               | 1.6  | 2.7 | 1.8  | 1.8  |  |  |  |  |
| FD.79 | 3        | 3.8               | 2.7  | 3.9 | 2.6  | 2.7  |  |  |  |  |
| FD.89 | 5.6      | 7.6               | 5.9  | 7.8 | 5.1  | 5.2  |  |  |  |  |
| FZ.29 | 0.6      | 0.9               | 0.4  | 0.7 | 0.5  | 0.45 |  |  |  |  |
| FZ.39 | 0.95     | 1.3               | 0.8  | 1.4 | 0.9  | 0.85 |  |  |  |  |
| FZ.49 | 1.6      | 2.5               | 1.6  | 2.5 | 1.6  | 1.6  |  |  |  |  |
| FZ.69 | 2.2      | 2.8               | 1.6  | 2.9 | 1.9  | 1.9  |  |  |  |  |
| FZ.79 | 2.8      | 4.1               | 2.9  | 4.2 | 2.7  | 2.9  |  |  |  |  |
| FZ.89 | 4.9      | 7.7               | 5.9  | 8.4 | 5.2  | 5.5  |  |  |  |  |

Table 11-54 Oil quantities in I for FD/ZF, sizes 29 - 89

| Туре  | Mountin | Mounting position |      |     |      |      |  |  |  |  |
|-------|---------|-------------------|------|-----|------|------|--|--|--|--|
|       | M1      | M2                | М3   | M4  | M5   | M6   |  |  |  |  |
| FDF29 | 0.6     | 0.8               | 0.35 | 0.6 | 0.45 | 0.45 |  |  |  |  |
| FDF39 | 1       | 1.2               | 0.75 | 1.3 | 0.8  | 0.85 |  |  |  |  |
| FDF49 | 2.2     | 2.3               | 1.5  | 2.4 | 1.6  | 1.5  |  |  |  |  |
| FDF69 | 2.4     | 2.8               | 1.6  | 2.9 | 1.9  | 1.9  |  |  |  |  |
| FDF79 | 3.1     | 3.9               | 2.7  | 4   | 2.7  | 2.6  |  |  |  |  |
| FDF89 | 5.8     | 7.6               | 5.8  | 8   | 5.2  | 5.2  |  |  |  |  |
| FZF29 | 0.6     | 0.9               | 0.4  | 0.7 | 0.5  | 0.45 |  |  |  |  |
| FZF39 | 1       | 1.4               | 0.85 | 1.6 | 0.95 | 0.9  |  |  |  |  |
| FZF49 | 1.8     | 2.4               | 1.5  | 2.6 | 1.6  | 1.6  |  |  |  |  |
| FZF69 | 2.4     | 2.9               | 1.6  | 3.1 | 2    | 2    |  |  |  |  |
| FZF79 | 2.9     | 4.2               | 2.9  | 4.3 | 2.9  | 2.8  |  |  |  |  |
| FZF89 | 5.1     | 7.7               | 5.8  | 8.6 | 5.3  | 5.4  |  |  |  |  |

# 11.3.32.3 Bevel gearbox

| Туре | Mounting position |      |     |      |      |     |  |
|------|-------------------|------|-----|------|------|-----|--|
|      | M1                | M2   | M3  | M4   | M5   | M6  |  |
| B.19 | 0.15              | 0.3  | 0.4 | 0.45 | 0.3  | 0.3 |  |
| B.29 | 0.25              | 0.55 | 0.7 | 0.85 | 0.55 | 0.5 |  |
| B.39 | 0.5               | 0.95 | 1.3 | 1.6  | 0.95 | 0.9 |  |
| B.49 | 1                 | 1.7  | 2.4 | 3.1  | 1.8  | 1.5 |  |

Table 11-55 Oil quantities in I for B, frame sizes 19 - 49

Table 11-56 Oil quantities in I for K, KA, KAS, KAT, frame sizes 39 - 109

| Туре  | Mounting position |      |     |      |      |      |  |  |  |
|-------|-------------------|------|-----|------|------|------|--|--|--|
|       | M1                | M2   | M3  | M4   | M5-A | M6-A |  |  |  |
|       |                   |      |     |      | M6-B | М5-В |  |  |  |
| K.39  | 0.35              | 0.85 | 1.1 | 1.2  | 0.85 | 0.9  |  |  |  |
| K.49  | 0.55              | 1.4  | 1.8 | 1.9  | 1.5  | 1.6  |  |  |  |
| K.69  | 0.75              | 2    | 2.5 | 2.7  | 2.2  | 2.2  |  |  |  |
| K.79  | 1                 | 2.2  | 2.9 | 3.4  | 2.7  | 2.5  |  |  |  |
| K.89  | 1.9               | 4.5  | 6   | 6.8  | 5    | 5.3  |  |  |  |
| K.109 | 3                 | 7.2  | 9.2 | 10.5 | 7.1  | 7.5  |  |  |  |

Table 11-57 Oil quantities in I for KZ, KAF., KAZ., KAD., frame sizes 39 - 109

| Туре  | Mounting position |     |     |      |      |      |  |
|-------|-------------------|-----|-----|------|------|------|--|
|       | M1                | M2  | М3  | M4   | M5-A | M6-A |  |
|       |                   |     |     |      | М6-В | М5-В |  |
| K.39  | 0.4               | 0.9 | 1.2 | 1.3  | 0.95 | 0.95 |  |
| K.49  | 0.65              | 1.5 | 1.9 | 2.2  | 1.6  | 1.6  |  |
| K.69  | 0.85              | 2.1 | 2.8 | 3.2  | 2.4  | 2.5  |  |
| K.79  | 1.1               | 2.4 | 3.1 | 3.7  | 2.5  | 2.7  |  |
| K.89  | 2.2               | 4.7 | 6.2 | 7.3  | 5.3  | 5.6  |  |
| K.109 | 3.7               | 7.4 | 9.6 | 11.7 | 7.6  | 8.2  |  |

Table 11-58 Oil quantities in I for KF, frame sizes 39 - 109

| Туре | Mounting position |     |     |     |      |      |  |  |  |
|------|-------------------|-----|-----|-----|------|------|--|--|--|
|      | M1                | M2  | М3  | M4  | M5-A | M6-A |  |  |  |
|      |                   |     |     |     | M6-B | M5-B |  |  |  |
| KF39 | 0.35              | 0.9 | 1.2 | 1.3 | 0.95 | 1    |  |  |  |
| KF49 | 0.6               | 1.4 | 2   | 2.2 | 1.6  | 1.7  |  |  |  |
| KF69 | 0.85              | 2   | 2.8 | 3.1 | 2.4  | 2.4  |  |  |  |

| Туре  | Mounting position |     |     |      |      |      |  |  |  |
|-------|-------------------|-----|-----|------|------|------|--|--|--|
|       | M1                | M2  | М3  | M4   | M5-A | M6-A |  |  |  |
|       |                   |     |     |      | M6-B | M5-B |  |  |  |
| KF79  | 1.2               | 2.3 | 3.1 | 3.8  | 3    | 2.5  |  |  |  |
| KF89  | 2.1               | 4.6 | 6.5 | 7.6  | 5.6  | 5.5  |  |  |  |
| KF109 | 3.6               | 7.4 | 9.8 | 11.7 | 8.1  | 7.8  |  |  |  |

# 11.3.32.4 Helical worm gearbox

Table 11-59 Oil quantities in I for C, CA., CAS, CAT, sizes 29 - 89

| Туре  | Mounting po | sition |      |      |      |     |
|-------|-------------|--------|------|------|------|-----|
|       | M1          | M2     | M3   | M4   | M5   | M6  |
| C.29  | 0.15        | 0.5    | 0.6  | 0.55 | 0.35 | 0.4 |
| C.39A | 0.15        | 0.75   | 0.65 | 0.65 | 0.35 | 0.4 |
| C.49  | 0.55        | 1.8    | 1.7  | 1.8  | 1    | 1.1 |
| C.69  | 0.75        | 2.6    | 2.6  | 2.9  | 1.6  | 1.7 |
| C.89  | 1.2         | 4.2    | 4.8  | 5    | 2.8  | 2.9 |

Table 11-60 Oil quantities in I for CZ, CAF., CAZ., CAD., sizes 29 - 89

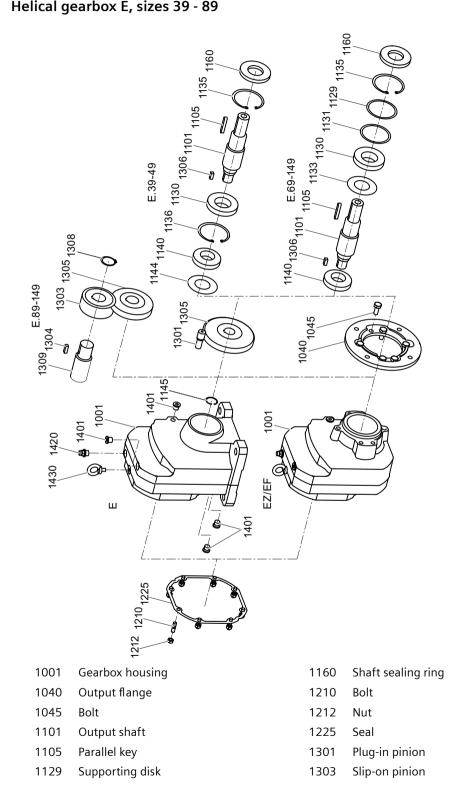

| Туре  | Mounting position |      |      |      |      |      |  |  |
|-------|-------------------|------|------|------|------|------|--|--|
|       | M1                | M2   | M3   | M4   | M5   | M6   |  |  |
| C.29  | 0.15              | 0.5  | 0.55 | 0.5  | 0.35 | 0.35 |  |  |
| C.39A | 0.15              | 0.75 | 0.65 | 0.65 | 0.35 | 0.4  |  |  |
| C.49  | 0.6               | 1.9  | 1.8  | 1.9  | 1.1  | 1.1  |  |  |
| C.69  | 0.8               | 2.6  | 2.6  | 3    | 1.6  | 1.6  |  |  |
| C.89  | 1.4               | 4.4  | 5    | 5.4  | 3    | 3    |  |  |

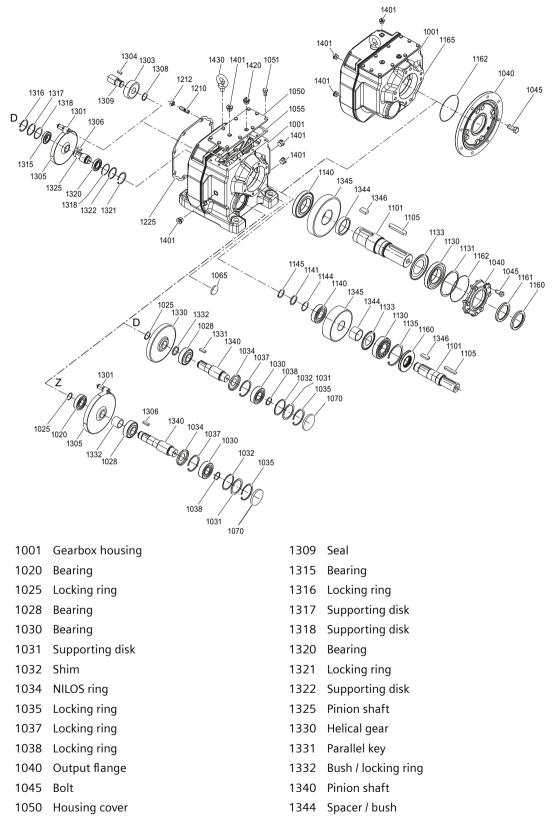
Table 11-61 Oil quantities in I for CF, sizes 29 - 89

| Туре  | Mounting position |      |      |     |      |      |  |
|-------|-------------------|------|------|-----|------|------|--|
|       | M1                | M2   | М3   | M4  | M5   | M6   |  |
| CF29  | 0.15              | 0.5  | 0.55 | 0.5 | 0.35 | 0.35 |  |
| CF39A | 0.15              | 0.85 | 0.75 | 0.7 | 0.45 | 0.4  |  |
| CF49  | 0.6               | 2    | 1.9  | 2   | 1.2  | 1.2  |  |
| CF69  | 0.8               | 2.6  | 2.6  | 3   | 1.6  | 1.6  |  |
| CF89  | 1.4               | 4.4  | 5    | 5.4 | 3    | 3    |  |

#### **Replacement part lists gearbox** 11.3.33

Helical gearbox E, sizes 39 - 89 11.3.33.1




| 1130                                          | Bearing                | 1304 | Parallel key |
|-----------------------------------------------|------------------------|------|--------------|
| 1131                                          | Shim                   | 1305 | Helical gear |
| 1133                                          | NILOS ring             | 1306 | Parallel key |
| 1135                                          | Locking ring           | 1308 | Locking ring |
| 1136                                          | Locking ring           | 1309 | Seal         |
| 1140                                          | Bearing                | 1401 | Screw plug   |
| 1144                                          | Supporting disk / shim | 1420 | Vent filter  |
| 1145                                          | Locking ring           | 1430 | Eyebolt      |
| Figure 11-69 Helical gearbox E, sizes 39 - 89 |                        |      |              |

# 11.3.33.2 Helical gearbox D / Z, sizes 19 - 89

#### Note

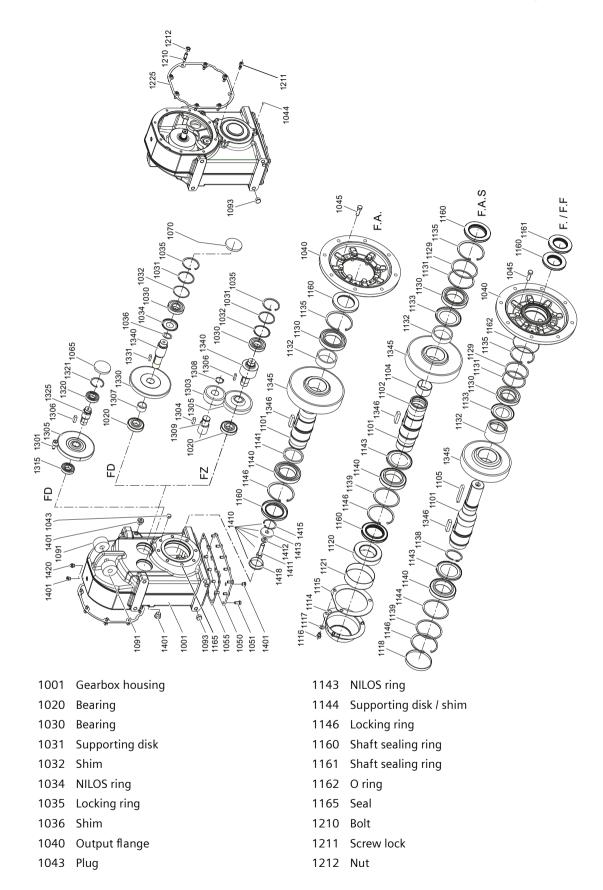
For gearbox sizes 19 and 29, we recommend that Siemens AG replaces the gearbox if service is required.

Parts subject to wear are available on request.



1051 Bolt

- 1345 Helical gear


| J      |                                            |      |              |
|--------|--------------------------------------------|------|--------------|
| 1055   | Seal                                       | 1346 | Parallel key |
| 1065   | Sealing cap                                | 1401 | Screw plug   |
| 1070   | Sealing cap                                | 1420 | Vent filter  |
| 1101   | Output shaft                               | 1430 | Eyebolt      |
| 1105   | Parallel key                               |      |              |
| 1130   | Bearing                                    |      |              |
| 1131   | Shim                                       |      |              |
| 1133   | NILOS ring                                 |      |              |
| 1135   | Locking ring                               |      |              |
| 1140   | Bearing                                    |      |              |
| 1141   | Supporting disk / shim                     |      |              |
| 1144   | Supporting disk / shim                     |      |              |
| 1145   | Locking ring                               |      |              |
| 1160   | Shaft sealing ring                         |      |              |
| 1161   | Shaft sealing ring                         |      |              |
| 1162   | O ring                                     |      |              |
| 1165   | Seal                                       |      |              |
| 1210   | Bolt                                       |      |              |
| 1212   | Nut                                        |      |              |
| 1225   | Seal                                       |      |              |
| 1301   | Plug-in pinion                             |      |              |
| 1303   | Slip-on pinion                             |      |              |
| 1304   | Parallel key                               |      |              |
| 1305   | Helical gear                               |      |              |
| 1306   | Parallel key                               |      |              |
| 1308   | Locking ring                               |      |              |
| Figure | 11-70 Helical gearbox D / Z, sizes 19 - 89 |      |              |

# 11.3.33.3 Parallel shaft gearbox F, sizes 29 - 89

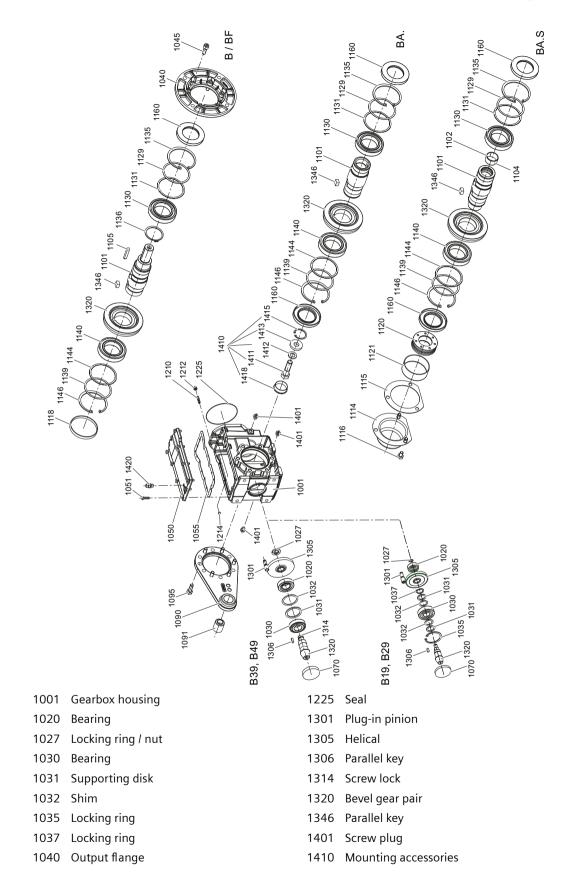
### Note

For gearbox size 29, we recommend that Siemens AG replaces the gearbox if service is required.

Parts subject to wear are available on request.



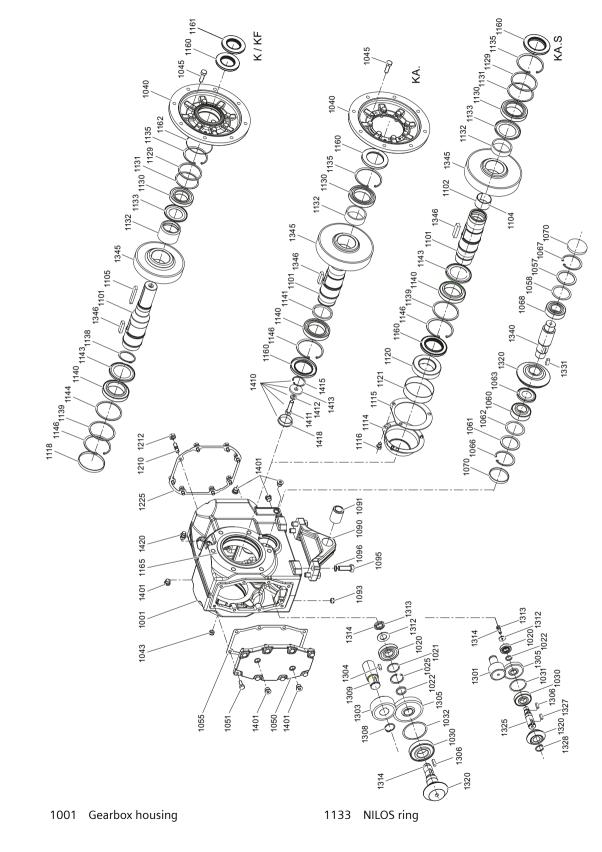
SINAMICS G115D distributed drive Operating Instructions, 12/2021, FW V4.7 SP13, A5E48681219B-004


| 1044                                                 | Plug               |     | 1225 | Seal                 |  |
|------------------------------------------------------|--------------------|-----|------|----------------------|--|
| 1045                                                 | Bolt               |     | 1301 | Plug-in pinion       |  |
| 1050                                                 | Housing cover      |     | 1303 | Slip-on pinion       |  |
| 1051                                                 | Bolt               |     | 1304 | Parallel key         |  |
| 1055                                                 | Seal               |     | 1305 | Helical gear         |  |
| 1065                                                 | Sealing cap        |     | 1306 | Parallel key         |  |
| 1070                                                 | Sealing cap        |     | 1307 | Spacer / bush        |  |
| 1091                                                 | Rubber bush        |     | 1308 | Locking ring         |  |
| 1093                                                 | Plug               |     | 1309 | Seal                 |  |
| 1101                                                 | Output shaft       |     | 1315 | Bearing              |  |
| 1102                                                 | Bushing            |     | 1320 | Bearing              |  |
| 1104                                                 | Seal               |     | 1321 | Locking ring         |  |
| 1105                                                 | Parallel           | key | 1325 | Pinion shaft         |  |
| 1114                                                 | Cover NDE          |     | 1330 | Helical gear         |  |
| 1115                                                 | Seal               |     | 1331 | Parallel key         |  |
| 1116                                                 | Bolt               |     | 1340 | Pinion shaft         |  |
| 1117                                                 | Screw lock         |     | 1345 | Helical gear         |  |
| 1118                                                 | Plug / sealing cap |     | 1346 | Parallel key         |  |
| 1120                                                 | Shrink disk        |     | 1401 | Screw plug           |  |
| 1121                                                 | Protective cap     |     | 1410 | Mounting accessories |  |
| 1129                                                 | Supporting disk    |     | 1411 | Bolt                 |  |
| 1130                                                 | Bearing            |     | 1412 | Locking ring         |  |
| 1131                                                 | Shim               |     | 1413 | Disk                 |  |
| 1132                                                 | Bushing            |     | 1415 | Locking ring         |  |
| 1133                                                 | NILOS ring         |     | 1418 | Sealing cap          |  |
| 1135                                                 | Locking ring       |     |      | Vent filter          |  |
| 1138                                                 | 3 Locking ring     |     |      |                      |  |
| 1139                                                 | Supporting disk    |     |      |                      |  |
| 1140                                                 | lO Bearing         |     |      |                      |  |
| 1141                                                 |                    |     |      |                      |  |
| Figure 11-71 Parallel shaft gearbox F, sizes 29 - 89 |                    |     |      |                      |  |

### 11.3.33.4 Bevel gearbox B, sizes 19 - 49

#### Note

For gearbox sizes 19 and 29, we recommend that Siemens AG replaces the gearbox if service is required.


Parts subject to wear are available on request.



| earbo | X                      |  |  |
|-------|------------------------|--|--|
|       |                        |  |  |
| 1045  | Bolt                   |  |  |
| 1050  | Housing cover          |  |  |
| 1051  | Bolt                   |  |  |
| 1055  |                        |  |  |
| 1070  | Sealing cap            |  |  |
| 1090  | Torque arm             |  |  |
| 1091  | Rubber bush            |  |  |
| 1095  | Bolt                   |  |  |
| 1101  | Output shaft           |  |  |
| 1102  | Bushing                |  |  |
| 1104  | Seal                   |  |  |
| 1105  | Parallel key           |  |  |
| 1114  | Cover NDE              |  |  |
| 1115  | Seal                   |  |  |
| 1116  | Bolt                   |  |  |
| 1118  | Plug / sealing cap     |  |  |
| 1120  | Shrink disk            |  |  |
| 1121  | Protective cap         |  |  |
| 1129  | Supporting disk        |  |  |
| 1130  | Bearing                |  |  |
| 1131  | Shim                   |  |  |
| 1135  | Locking ring           |  |  |
| 1136  | Locking ring           |  |  |
| 1139  | Supporting disk        |  |  |
| 1140  | Bearing                |  |  |
| 1144  | Supporting disk / shim |  |  |
| 1146  | Locking ring           |  |  |
| 1160  | Shaft sealing ring     |  |  |
| 1210  | Bolt                   |  |  |
| 1212  | Nut                    |  |  |
|       |                        |  |  |

- 1214 Plug
- Figure 11-72 Bevel gearbox B, sizes 19 49

- 1411 Bolt
- 1412 Locking ring
- 1413 Disk
- 1415 Locking ring
- 1418 Sealing cap
- 1420 Vent filter



# 11.3.33.5 Bevel gearbox K, frame sizes 39 - 109

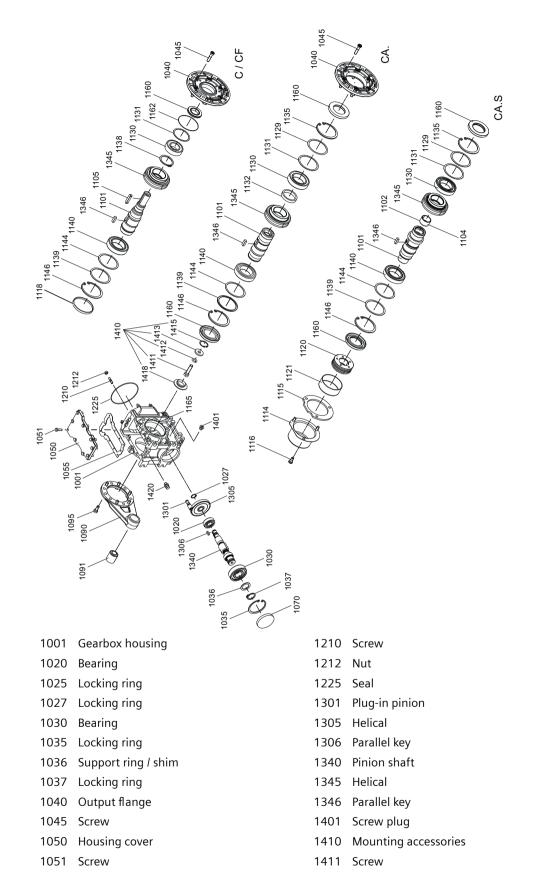

| 1020 |                        | 1125 |                                         |
|------|------------------------|------|-----------------------------------------|
|      | Bearing                | 1135 | 5 5                                     |
| 1021 | Supporting disk / shim | 1138 | 5 5                                     |
| 1022 | Supporting disk / shim | 1139 | 11 5                                    |
|      | Locking ring           | 1140 |                                         |
| 1030 | Bearing                | 1141 | Supporting disk / shim                  |
| 1031 | Supporting disk        | 1143 | NILOS ring                              |
| 1032 | Shim                   | 1144 | 5 I I I I I I I I I I I I I I I I I I I |
| 1040 | Output flange          | 1146 |                                         |
| 1043 | Plug                   | 1160 | 5 5                                     |
| 1045 | Bolt                   | 1161 | 5 5                                     |
| 1050 | Housing cover          | 1162 | 5                                       |
| 1051 | Bolt                   | 1165 | Seal                                    |
| 1055 | Seal                   | 1210 | Bolt                                    |
| 1057 | Supporting disk        | 1212 | Nut                                     |
| 1058 | Shim                   | 1225 | Seal                                    |
| 1060 | Tapered roller bearing | 1301 | Plug-in pinion                          |
| 1061 | Supporting disk        | 1303 | Slip-on pinion                          |
| 1062 | Shim                   | 1304 | Fitted key                              |
| 1063 | NILOS ring             | 1305 | Helical gear                            |
| 1066 | Locking ring           | 1306 | Fitted key                              |
| 1067 | Locking ring           | 1308 | Locking ring                            |
| 1068 | Tapered roller bearing | 1309 | Seal                                    |
| 1070 | Sealing cap            | 1312 | Disk                                    |
| 1090 | Torque arm             | 1313 | Bolt/nut                                |
| 1091 | Rubber bush            | 1314 | Screw lock                              |
| 1093 | Plug                   | 1320 | Bevel gear pair                         |
| 1095 | Bolt                   | 1325 | Pinion shaft                            |
| 1096 | Screw lock             | 1327 | Fitted key                              |
| 1101 | Output shaft           | 1328 | Locking ring                            |
| 1102 | Bushing                | 1331 | Fitted key                              |
| 1104 | Seal                   | 1340 | Pinion shaft                            |
| 1105 | Fitted key             | 1345 | Helical gear                            |
| 1114 | Cover NDE              | 1346 | Fitted key                              |
| 1115 | Seal                   | 1401 | Screw plug                              |
| 1116 | Bolt                   | 1410 | Mounting accessories                    |
| 1118 | Plug / sealing cap     | 1411 | Bolt                                    |
| 1120 | Shrink disk            | 1412 | Locking ring                            |
| 1121 | Protective cap         | 1413 | Disk                                    |
| 1129 | Supporting disk        | 1415 | Locking ring                            |
| 1130 | Bearing                | 1418 | Sealing cap                             |
| 1131 | Shim                   | 1420 | Vent filter                             |
| 1132 | Supporting disk / shim |      |                                         |
|      |                        |      |                                         |

Figure 11-73 Bevel gearbox K, frame sizes 39 - 109

### 11.3.33.6 Helical worm gearbox C, sizes 29 - 89

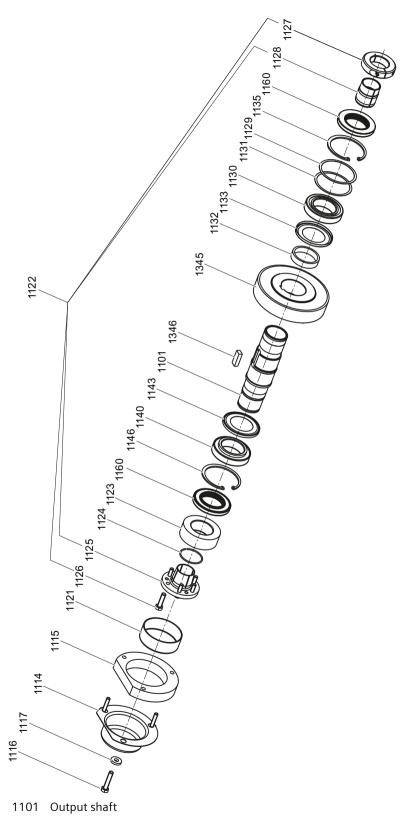
### Note

For gearbox size 29, we recommend that Siemens AG replaces the gearbox if service is required. Parts subject to wear are available on request.



1055 Seal

1070 Sealing cap


1090 Torque arm

1091 Rubber bush

- 1095 Screw
- 1101 Output shaft
- 1102 Bushing
- 1104 Seal
- 1105 Parallel key
- 1114 Cover NDE
- 1115 Seal
- 1116 Screw
- 1118 Plug / sealing cap
- 1120 Shrink disk
- 1121 Protective cap
- 1129 Supporting disk
- 1130 Bearing
- 1131 Shim
- 1132 Support ring / shim
- 1135 Locking ring
- 1138 Locking ring
- 1139 Supporting disk
- 1140 Bearing
- 1144 Shim
- 1146 Locking ring
- 1160 Shaft sealing ring
- 1162 O ring
- 1165 Seal
- Figure 11-74 Helical worm gearbox C sizes 29 89

- 1412 Locking ring
- 1413 Disk
- 1415 Locking ring
- 1418 Sealing cap
- 1420 Vent filter

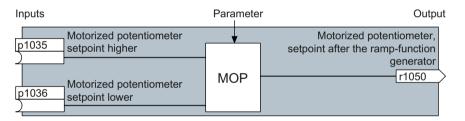
## 11.3.33.7 SIMOLOC assembly system, sizes 29 - 89



- 1114 Cover NDE
- 1115 Seal
- 1116 Bolt
- 1117 Screw lock
- 1121 Protective cap
- 1122 SIMOLOC mounting kit
- 1123 Thrust collar
- 1124 Snap ring
- 1125 Tapered bushing
- 1126 Bolt
- 1127 Clamping ring
- 1128 Bushing
- 1129 Supporting disk
- 1130 Bearing
- 1131 Shim
- 1132 Bushing
- 1133 NILOS ring
- 1135 Locking ring
- 1140 Bearing
- 1143 NILOS ring
- 1146 Locking ring
- 1160 Shaft sealing ring
- 1345 Helical
- 1346 Parallel key
- Figure 11-75 SIMOLOC assembly system, sizes 29 89

# Appendix

# A.1 Interconnecting signals in the converter

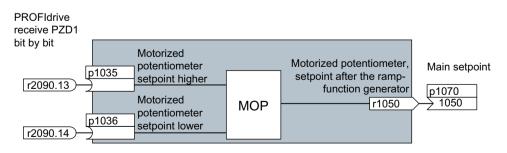

### A.1.1 Fundamentals

The following functions are implemented in the converter:

- Open-loop and closed-loop control functions
- Communication functions
- Diagnosis and operating functions

Every function comprises one or several blocks that are interconnected with one another.

#### Example of a block: Motorized potentiometer (MOP)




Most of the blocks can be adapted to specific applications using parameters.

You cannot change the signal interconnection within the block. However, the interconnection between blocks can be changed by interconnecting the inputs of a block with the appropriate outputs of another block.

The signal interconnection of the blocks is realized, contrary to electric circuitry, not using cables, but in the software.

#### Example: Signal interconnection of two blocks for digital input 0




A.1 Interconnecting signals in the converter

### **Binectors and connectors**

Connectors and binectors are used to exchange signals between the individual blocks:

- Connectors are used to interconnect "analog" signals (e.g. MOP output speed)
- Binectors are used to interconnect digital signals (e.g. "Enable MOP up" command)



Binector/connector outputs (CO/BO) are parameters that combine more than one binector output in a single word (e.g. r0052 CO/BO: status word 1). Each bit in the word represents a digital (binary) signal. This summary reduces the number of parameters and simplifies parameter assignment.

Binector or connector outputs (CO, BO or CO/BO) can be used more than once.

### Interconnecting signals

#### When must you interconnect signals in the converter?

If you change the signal interconnection in the converter, you can adapt the converter to a wide range of requirements. This does not necessarily have to involve highly complex functions.

Example 1: Assign a different function to a digital input.

Example 2: Switch the speed setpoint from the fixed speed to the analog input.

### Principle when connecting BICO blocks using BICO technology

When interconnecting the signal, the following principle applies: Where does the signal come from?

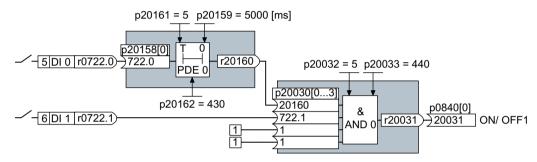
An interconnection between two BICO blocks consists of a connector or a binector and a BICO parameter. The input of a block must be assigned the output of a different block: In the BICO parameters, enter the parameter numbers of the connector/binector that should supply its output signal to the BICO parameter.

### How much care is required when you change the signal interconnection?

Note which changes you make. A subsequent analysis of the set signal interconnections is possible only by evaluating the parameter list.

#### Where can you find additional information?

- All the binectors and connectors are located in the parameter list in the List Manual.
- The function diagrams in the List Manual provide a complete overview of the factory setting for the signal interconnections and the setting options.


# A.1.2 Application example

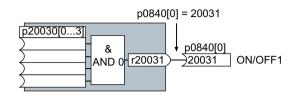
### Shift the control logic into the converter

It is only permissible that a conveyor system starts when two signals are present simultaneously. These could be the following signals, for example:

- The oil pump is running (the required pressure level is not reached, however, until after 5 seconds).
- The protective door is closed.

To implement this task, you must insert free function blocks between digital input 0 and the command to switch on the motor (ON/OFF1).




The signal of digital input 0 (DI 0) is fed through a time block (PDE 0) and is interconnected with the input of a logic block (AND 0). The signal of digital input 1 (DI 1) is interconnected to the second input of the logic block. The logic block output issues the ON/OFF1 command to switch on the motor.

### Setting the control logic

| Parameter         | Description                                                                                   |  |
|-------------------|-----------------------------------------------------------------------------------------------|--|
| p20161 = 5        | The time block is enabled by assigning to runtime group 5 (time slice of 128 ms)              |  |
| p20162 = 430      | Run sequence of the time block within runtime group 5 (processing before the AND logic block) |  |
| p20032 = 5        | The AND logic block is enabled by assigning to runtime group 5 (time slice of 128 ms)         |  |
| p20033 = 440      | Run sequence of the AND logic block within runtime group 5 (processing after the time block)  |  |
| p20159 = 5000.00  | Setting the delay time [ms] of the time module: 5 seconds                                     |  |
| p20158 = 722.0    | Connect the status of DI 0 to the input of the time block                                     |  |
|                   | r0722.0 = Parameter that displays the status of digital input 0.                              |  |
| p20030[0] = 20160 | Interconnecting the time block to the 1st AND input                                           |  |
| p20030[1] = 722.1 | Interconnecting the status of DI 1 to the 2nd AND input                                       |  |
|                   | r0722.1 = Parameter that displays the status of digital input 1.                              |  |
| p0840 = 20031     | Interconnect the AND output to ON/OFF1                                                        |  |

#### Explanation of the application example using the ON/OFF1 command

Parameter p0840[0] is the input of the "ON/OFF1" block of the converter. Parameter r20031 is the output of the AND block. To interconnect ON/OFF1 with the output of the AND block, set p0840 = 20031.



# A.2 Acceptance tests for the safety functions

### A.2.1 Recommended acceptance test

#### Note

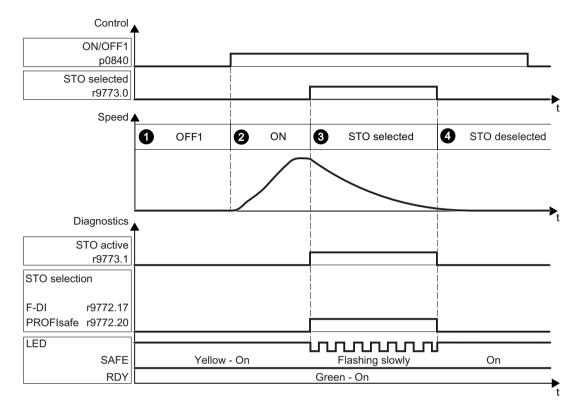
The "Startdrive Advanced" commissioning tool (requires an appropriate license) includes a wizard for the acceptance test of the safety functions integrated in the drive. For more information, see Chapter "Acceptance - completion of commissioning (Page 250)".

The following descriptions for the acceptance test are recommendations that illustrate the principle of acceptance. You may deviate from these recommendations if you check the following once you have completed commissioning:

- Correct assignment of the interfaces of each converter with the safety function:
  - Fail-safe inputs
  - PROFIsafe address
- Correct setting of the STO safety function.

#### Note

Perform the acceptance test with the maximum possible velocity and acceleration in order to test the expected maximum braking distances and braking times.


#### Note

#### **Non-critical alarms**

The following alarms are issued following each system ramp-up and are not critical for acceptance:

- A01697
- A01796

# A.2.2 Acceptance test STO (basic functions)



### Procedure

To perform an acceptance test of the STO function as part of the basic functions, proceed as follows:

|    |                                    |                                                                                             | Status |
|----|------------------------------------|---------------------------------------------------------------------------------------------|--------|
| 1. | The co                             | onverter is ready                                                                           |        |
|    |                                    | e converter signals neither faults nor alarms of the safety functions (r0945[07], 122[07]). |        |
|    | • STO is not active (r9773.1 = 0). |                                                                                             |        |
| 2. | Switch                             | n on motor                                                                                  |        |
|    | 2.1.                               | Enter a speed setpoint $\neq$ 0.                                                            |        |
|    | 2.2.                               | Switch on the motor (ON command).                                                           |        |
|    | 2.3.                               | Check that the correct motor is running.                                                    |        |

|    |                                                                         |                                                                                                                                                                                       |                                                                                                                         | Status |  |
|----|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------|--|
| 3. | Select STO                                                              |                                                                                                                                                                                       |                                                                                                                         |        |  |
|    | 3.1.                                                                    | 1. Select STO while the motor is running.                                                                                                                                             |                                                                                                                         |        |  |
|    | Test each configured activation, e.g. via digital inputs and PROFIsafe. |                                                                                                                                                                                       |                                                                                                                         |        |  |
|    | 3.2.                                                                    | Check the following:                                                                                                                                                                  |                                                                                                                         |        |  |
|    |                                                                         | When controlled via PROFIsafe                                                                                                                                                         | When controlled via fail-safe digital inputs (F-DI)                                                                     |        |  |
|    |                                                                         | • The converter signals the following:<br>"STO selection via PROFIsafe"<br>(r9772.20 = 1)                                                                                             | <ul> <li>The converter signals the follow-<br/>ing:</li> <li>"STO Selection via terminal"<br/>(r9772.17 = 1)</li> </ul> |        |  |
|    |                                                                         | <ul> <li>If a mechanical brake is not available, the motor coasts down.</li> <li>A mechanical brake brakes the motor and holds it to ensure that it remains at standstill.</li> </ul> |                                                                                                                         |        |  |
|    |                                                                         | • The converter signals neither faults n (r0945[07], r2122[07]).                                                                                                                      | or alarms of the safety functions                                                                                       |        |  |
|    |                                                                         | • The converter signals the following:<br>"STO is selected" (r9773.0 = 1).<br>"STO is active" (r9773.1 = 1).                                                                          |                                                                                                                         |        |  |
| 4. | Desel                                                                   | ect STO                                                                                                                                                                               |                                                                                                                         |        |  |
|    | 4.1.                                                                    | Deselect STO.                                                                                                                                                                         |                                                                                                                         |        |  |
|    | 4.2.                                                                    | Check the following:                                                                                                                                                                  |                                                                                                                         |        |  |
|    |                                                                         | • STO is not active (r9773.1 = 0).                                                                                                                                                    |                                                                                                                         |        |  |
|    |                                                                         | • The converter signals neither faults nor alarms of the safety functions (r0945[07], r2122[07]).                                                                                     |                                                                                                                         |        |  |

You have performed the acceptance test of the STO function.  $\hfill\square$ 

# A.2.3 Machine documentation

# Machine or plant description

| Designation   |  |
|---------------|--|
| Туре          |  |
| Serial number |  |
| Manufacturer  |  |

| End customer            |                        |  |
|-------------------------|------------------------|--|
| Overview diagram of the | nachine and/or system: |  |
|                         |                        |  |
|                         |                        |  |
|                         |                        |  |
|                         |                        |  |
|                         |                        |  |

### **Converter data**

The converter data include the hardware version of the safety-relevant converter.

| Labeling the drive | Article number and hardware version of the converter |
|--------------------|------------------------------------------------------|
|                    |                                                      |
|                    |                                                      |

### **Function table**

The active safety functions depending on the operating mode and safety equipment are shown in the function table.

| Operating<br>mode | Safety equipment | Drive | Selected safety function | Checked |
|-------------------|------------------|-------|--------------------------|---------|
|                   |                  |       |                          |         |
|                   |                  |       |                          |         |

| Operating<br>mode | Safety equipment              | Drive         | Selected safety function | Checked |
|-------------------|-------------------------------|---------------|--------------------------|---------|
| Automatic         | Protective door closed        | Conveyor belt |                          |         |
|                   | Protective door open          | Conveyor belt | STO                      |         |
|                   | Emergency Stop button pressed | Conveyor belt | STO                      |         |

#### Acceptance test reports

| File name of the acceptance reports |  |  |
|-------------------------------------|--|--|
|                                     |  |  |
|                                     |  |  |

#### Appendix

A.3 Manuals and technical support

### Data backup

| Data                    | Storage medium |             |      | Holding area |
|-------------------------|----------------|-------------|------|--------------|
|                         | Archiving type | Designation | Date |              |
| Acceptance test reports |                |             |      |              |
| PLC program             |                |             |      |              |
| Circuit diagrams        |                |             |      |              |

### Countersignatures

#### **Commissioning engineer**

The commissioning engineer confirms that the tests and checks listed above have been correctly executed.

| Date | Name | Company/dept. | Signature |
|------|------|---------------|-----------|
|      |      |               |           |

### Machine manufacturer

The machine OEM confirms the correctness of the settings documented above.

| Date | Name | Company/dept. | Signature |
|------|------|---------------|-----------|
|      |      |               |           |

# A.3 Manuals and technical support

### A.3.1 Overview of the manuals

### Manuals with additional information that can be downloaded:

• Operating Instructions (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>) Installing, commissioning and maintaining the drive. Advanced commissioning (this manual)



- Compact Operating Instructions for G115D Motor Mounted (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
  Installing and commissioning the drive
- Compact Operating Instructions for G115D Wall Mounted (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
  Installing and commissioning the converter

- Compact Installation Instructions for G115D Electronic Module (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
  Replacing the Electronic Module
- Compact Installation Instructions for G115D External Braking Resistor (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
  Installing and commissioning the external braking resistor
- SINAMICS G120 Smart Access Operating Instructions (<u>https://support.industry.siemens.com/cs/ww/en/view/109758122</u>)
   Operating the converter from a PC, tablet or smartphone
   C
- Compact Installation Instructions for SAM interface kit (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
  Installing the SAM interface kit
- Isafety Integrated" Function Manual (<u>https://support.industry.siemens.com/cs/ww/en/view/109477367</u>)
   Commissioning and optimizing safety functions
- Tieldbus" Function Manual (<u>https://support.industry.siemens.com/cs/ww/en/view/109477369</u>)
   Configuring fieldbuses
- List Manual (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
  Parameter list, alarms and faults, graphic function diagrams
- Protective devices (<u>https://support.industry.siemens.com/cs/ww/en/ps/27867/man</u>)
   Overcurrent protection devices of the G115D converter
- AS-Interface System Manual (<u>https://support.industry.siemens.com/cs/ww/en/view/</u>
  26250840)
- GAS-Interface Introduction and Basics Manual (<u>https://support.industry.siemens.com/cs/</u> gb/en/view/1171856)

# A.3.2 Configuring support

### Catalog

Ordering data and technical information for the converter.



Catalogs for download or online catalog (Industry Mall):

A.3 Manuals and technical support

SINAMICS G115D (<u>www.siemens.com/sinamics-g115d</u>)

### EMC (electromagnetic compatibility) technical overview

Standards and guidelines, EMC-compliant control cabinet design

EMC overview (<u>https://support.industry.siemens.com/cs/ww/en/view/103704610</u>)

### **EMC Guidelines configuration manual**

EMC-compliant control cabinet design, potential equalization and cable routing



EMC installation guideline (<u>https://support.industry.siemens.com/cs/ww/en/view/</u> 60612658)

### A.3.3 Product support

### Overview

You can find additional information about the product on the Internet:

Product support (<u>https://support.industry.siemens.com/cs/ww/en/</u>) This URL provides the following:

- Up-to-date product information (product announcements)
- FAQs
- Downloads
- The Newsletter contains the latest information on the products you use.
- The Knowledge Manager (Intelligent Search) helps you find the documents you need.
- Users and specialists from around the world share their experience and knowledge in the Forum.
- You can find your local representative for Automation & Drives via our contact database under "Contact & Partner".
- Information about local service, repair, spare parts and much more can be found under "Services".

If you have any technical questions, use the online form in the "Support Request" menu:

A.3 Manuals and technical support

| States                                              | Contact Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ✓ Support Request ▶ Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rmation                                             | Web Based Training<br>training on highligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | directly to a product specialist at Technical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rrent information from our<br>your specific product |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Create support request     Status of your re     Track the status of     online. An overview     found here:     Othere are stated as a second s |
|                                                     | 2 Storage AAee     2 Storage AAee     3500cm-1 word get     3 | > Status of your requests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

### Appendix

A.3 Manuals and technical support

# Index

## 8

87 Hz characteristic, 81

# Α

Acceptance test, 250 Acceptance test record, 250 Complete, 250 Reduced acceptance test, 251 Reduced scope, 397 STO (basic functions), 589, 590 Test scope, 397 Acyclic communication, 162 Alarm, 357, 363, 369 Alarm buffer, 363 Alarm code, 363 Alarm history, 363 Alarm time, 363 Alarm value, 363 Ambient temperature, 321 Application example, 98, 163, 260, 262, 263, 311, 587 Automatic mode, 227

# В

BICO block, 585 Bi-metal switch, 316 Binectors, 586 Bit pattern test, 245 Braking functions, 305 DC braking, 153, 306 Dynamic braking, 309 Braking method, 305 Braking module, 309 Braking resistor, 309

# С

Catalog, 593 CDS (Command Data Set), 227, 249 Characteristic Additional, 282 Linear, 282

parabolic, 282 square-law, 282 Clockwise rotation, 142 Closed-loop torque control, 304 Command Data Set, 227 Commissioning guidelines, 111 Commissioning tools SINAMICS G120 Smart Access, 112 Startdrive, 112 Connection interface 24 V power supply interface X01/X02, 82 AS-i communication interface X03, 101 DI/DO interface X07/X08/X05, 86 External braking resistor, X4, 106 Interface overview, 63 Line supply interface X1/X3, 74 Motor power interface X2, 79 PROFINET communication interface X150 P1/ P2.94 Connectors, 586 Consistent signals, 244 Control word STW G115D (control word G115D), 154 STW1 (control word 1), 151 STW3 (control word 3), 153 Controlling the motor, 142 Converter state Operation, 138 Ready, 138 Ready for switching on, 138 Switching on inhibited, 138, 151 Converter variants Connector variant, 62 Glanded variant, 62 Counter-clockwise rotation, 142

# D

Daisy chain 24 V power supply, 84 Line supply, 76 Data backup, 339, 346 Data set changeover, 249 Data transfer, 346 DC-link voltage, 321 DDS (Drive Data Set), 336 Delta connection ( $\Delta$ ), 80 Derating Installation altitude, 407, 420

Line voltage, 408, 421 Motor speed, 411 Pulse frequency, 409, 422 Surrounding temperature, 408, 420 Digital inputs, 139, 140, 142, 249 Digital outputs, 139, 141 Direction of rotation, 261 Direction reversal, 142 Directives and standards IEC/EN 61800-3, 33 IEC/EN 61800-5-2, 239 Discrepancy, 244 Filter for F-DI, 244 Tolerance time, 244 Drive control, 135 Droop, 289

## Ε

Emergency Stop button, 240 Energy-saving display, 334 Ethernet checklist, 99

### F

Fault, 357, 366, 369 Fault acknowledge, 367 Fault buffer, 366 Fault case, 368 Fault code, 366 Fault history, 367 Fault time, 366 Fault value, 366 Fault time, 366 Field weakening, 81 Filter for F-DI Contact bounce, 245 Discrepancy, 244 On/off test, 245 Firmware Downgrade, 394 Upgrade, 391 Flux current control (FCC), 280, 282 Forced checking procedure, 247 Forced dormant error detection setting, 246 Forming the DC link capacitors, 62 Free function blocks, 234 Functional expansions, 251

### I

I\_max controller, 311 i<sup>2</sup>t monitoring, 315 Inching/continuous, 388 Industry Mall, 593

### J

JOG function, 190

### Κ

Know-how protection, 341, 352 KTY 84 temperature sensor, 316

## L

LED, 357 ACT, 360 AS-i/FLT, 360 BF, 359 DI, 360 DI/O, 360 LNK, 360 RDY, 358, 359 SAFE, 359 License, 341 Linear characteristic, 282 local/remote control (LRC) panel, 387

## Μ

Main screen form (Basic Functions), 243 Manual mode, 227 Maximum cable length Communication cables, 70 Control cables, 70 Motor cables, 70 Maximum current controller, 311 Maximum speed, 262 MELD NAMUR (fault word according to the VIK-Namur definition), 156 Memory card formatting, 341 Memory cards, 340 Minimum speed, 261 Moment of inertia estimator, 296 Motor code, 115 Motor control mode, 136

Motor data, 115 Motor data identification, 287, 304 Motor holding brake, 229, 305 Motor standard, 235 Motor starting optimization, 283 Motor temperature sensor, 318

# 0

OFF1 command, 142 OFF3 ramp-down time, 268 ON command, 142 Optimizing the closed-loop speed controller, 287 Options Connector cover kit, 36 External braking resistor, 34 Glanded installation kit, 36 QUICKON connector, 35 QUICKON nut, 35 SAM interface kit, 37 SINAMICS G120 Smart Access, 37 Overload, 312

## Ρ

Page index, 158 Parabolic characteristic, 282 Parameter channel, 156 Partial load operation, 424 PID controller, 271 PKW (parameter, ID value), 148 PLC functionality, 587 PNU (parameter number), 158 Pole position, 302 Pole position identification, 302 Pre-control, 298 Protection functions, 136 Pt1000 sensor, 316 PTC temperature sensor, 316 Pulse cancelation, 151 Pulse enable, 151 Pulse frequency, 314, 315 PZD (process data), 148

# Q

Quick stop override, 388

# R

Ramp time scaling, 270 Ramp-down time, 267, 270 Ramp-function generator, 262, 266 Ramp-up time, 267, 270 Reduced acceptance test Converter, 397 Electronic module, 397 Firmware upgrade, 397 Gearbox, 397 Motor, 397 Safety-related hardware, 397 Regenerative operation, 305 Resetting the safety functions, 133 Restoring the factory settings, 131 Reversing, 261

# S

Safety function, 136 Self-test, 247 Series commissioning, 251, 339 Setpoint processing, 136, 262 Setpoint source, 136 Electromechanical potentiometers, 254 Fieldbus, 253 Fixed speed setpoint, 258 Motorized potentiometer (MOP), 255 Short-circuit monitoring, 317, 318 Signal interconnection, 585 Skip frequency band, 261 Slip compensation, 280 Speed control, 285 Speed limitation, 262 Square-law characteristic, 282 Star connection (Y), 80 Status word ZSW G115D (status word G115D), 155 ZSW1 (status word 1), 152 ZSW3 (status word 3), 154 STO (Safe Torque Off), 238 Acceptance test, 589, 590 Selecting, 238 STO commissioning tool, 241 Storage media, 339 Subindex, 158 Switch off OFF1 command, 139

OFF2 command, 139 OFF3 command, 139 Switch on ON command, 139 Switch-off signal paths, 247 System runtime, 361

### Т

Technology controller, 136, 153, 236, 271 Telegram expanding, 160 Temperature calculation, 319 Temperature monitoring, 315, 319 Temperature switch, 316 Terminal layout, 66 Test signals, 245 Three-wire control, 142 Two-wire control, 142

### U

U/f characteristic, 280 Unit system, 235 Use for the intended purpose, 3

### V

Vector control, 285, 287, 304 Voltage boost, 280, 283

### W

Wire breakage, 244 Wire-break monitoring, 317, 318 Write protection, 349

# **Further information**

SINAMICS: www.siemens.com/sinamics

SIMOGEAR: www.siemens.com/simogear

Safety Integrated: www.siemens.com/safety-integrated

Siemens AG Digital Industries Motion Control Postfach 31 80 91050 ERLANGEN Germany

Scan the QR code for additional information about SINAMICS G115D.

